

Contents

Program Overview	3
Introduction	3
Company Joint Use Engineering and Planning Qualifications	3
Pole Attachment and Overlashing Application Procedures	4
Clearances	7
Guys and Anchors	8
Wireless Attachment Devices	8
Supply and Communications	9
Pole Top Antenna	9
Design Criteria	11
One Touch Make Ready	11
Sag/Tension Assumptions	11
Service Drops	12
Additional Considerations	12
Meters	12
Wi-Fi & Small Cell	12
Strandmount Equipment	12
Pole Change-Outs	13
Other	13
Pole and Facility Data Sheets	14
Pole Attachment Cases	16
KCP&L Territory	16
Setup Parameters for Pole Loading Analysis	20
List of Additional Cross Arms, Guywire, Standoff Brackets and Anchors	21
Conductor Data	30
KCPL Conductor Data	30
Westar Conductor Data	34
Steel Reinforcing Data	36
Remedy Estimates	38
Appendix A-1: KCPL Conductor Properties, Sag and Tension Tables	39
Appendix A-2: Westar Energy Conductor Properties, Sag and Tension Tables	52
Appendix B-1: MIL-STD-105D Variable Definitions for Field Measurements	59
Appendix B-2: MIL-STD-105D Variable Definitions for Pole Loading Analysis	60
Appendix B-3: MIL-STD-105D Variable Definitions for As-Built Construction	61
Appendix C: Drawings	62
Appendix D: Tenant Tag Material Specifications	84

Program Overview

Introduction

This document shall cover anyone desiring to:

- 1. Attach to KCP&L or Westar Energy (Evergy Companies), hereafter referred to as 'Company', poles
- 2. Overlash to existing facilities whether owned by proposing tenant or another tenant on Company poles
- 3. Occupy conduit(s)

A contractor must first have a constructural agreement in place with Company. After the agreement is finalized, the proposed tenant must make application via NJUNS. These requirements shall apply to anyone wanting to attach to or occupy Company facilities including all cable operators or telecommunications carriers, and any affiliate of Company. Throughout this document, all types of attachers and their facilities other than Company's will be referred to as tenants, attachers, communications facilities or attacher's facilities.

The attacher must submit, along with each application for pole attachment, the data contained in items 1-3 of the section below entitled "Pole Attachment and Overlashing Application Procedures." Except as otherwise specified, the provisions of this document shall apply to all attachers. All planning cost associated will be the responsibility of the tenant proposing the attachment or overlash.

Company Joint Use Engineering and Planning Qualifications

The following items are prerequisites for approval by Company of a contractor ('contractor') to perform planning and engineering work in connection with permit applications to attach to Company facilities.

- Approval of work experience biography(s) for all personnel who will perform pole loading analysis
 calculations. The biography(s) shall include work experience related to pole loading analysis and
 joint use. A signature and stamp by a Professional Engineer in good standing is required for all
 calculations performed by contractor.
- 2. Agreement to abide by the Company Standards and rules for attachment to Company poles by foreign entities set forth in this document. Company and contractor shall have an in-person item by item review and discussion of the data, pole loading analysis, construction and other requirements contained in KCPL and Westar Standards.
- 3. Company may, at its option, visit the office of the attaching entity or contractor.
- 4. Approval of software to be utilized in performing pole loading analysis. The attaching entity or the Company approved contractor shall provide Company a description of the software to be utilized including the version number. If, at any time, the attaching entity or Company approved contractor seeks to utilize different pole loading analysis software, version or programs, approval by Company must first be obtained.
- 5. Agreement to utilize Company Pole & Facility Data Sheets. Company will provide a data sheet form to be utilized and completed by the attaching entity or the Company approved contractor in submitting field measurements for poles contained in the attaching entity's applications that are to be reviewed by Company or its agent(s). It is recommended but not required that profile and plan sketches of the poles to be reviewed be provided to avoid ambiguities that may arise from the information provided on the data sheets.
- 6. Successful completion of sample calculations. Company will provide field data information (as typically collected and documented) for six test pole scenarios. Company will provide a completed Pole & Facility Data Sheet for the first scenario. Company requires the contractor to

- complete the Pole & Facility Data Sheets for the other five scenarios and provide the results to Company. The completed Pole & Facility Data Sheets should include the pole loading analysis results and remedies for overloaded poles and clearance violations.
- 7. Company will provide a document concerning the installation and pole loading analysis of steel reinforced wood poles.
- 8. Agreement to abide by Field Measurement Requirements. Company and the approved contractor will have an in-person meeting to review and discuss the acceptable methods of measuring and collecting field data including:
 - a. Measuring height of pole attachments at the pole. This includes primary, neutral, secondaries, services, equipment, and existing attachments.
 - b. Measuring span lengths of all conductor and cable facilities on the pole.
 - c. Measuring clearances of all conductor and cable facilities above ground (keeping in mind the clearance requirements above roads, alleys, RR tracks, etc.)
 - d. Measuring heading angle of each conductor or cable facility attached to a pole. Discussion will include measuring devices and methods and the limitations around each device/method.
- Company will provide the attaching entity or the Company approved contractor with Company's Construction Standards, including KCPL and Westar Standards, Company Material Units (detailing construction units listed in the Construction Standards), and pricing estimates for construction costs of typical make-ready and overloaded pole remedies.
- 10. Company will provide the following supporting information for performing pole loading analysis:
 - a. Known or assumed horizontal and vertical loading of typical Company facilities and other's facilities with $\frac{1}{2}$ " of ice and 4lb./sq.-ft wind.
 - b. Known or assumed tension values of typical Company and other's conductors and cables at final sag with NESC Heavy conditions at 150' span. The Company approved contractor is responsible for determining tensions for these conductors and cables at other spans.
 - c. Pole loading analysis program setup parameters used by Company.
- 11. Construction planning requirements shall include construction instructions per pole indicating work to be performed and new attachments heights.
- 12. Company and the approved contractor will review Company's mapping system. Company territory maps are available from Company. Electronic versions with Company facility attributes are available if appropriate license agreements are executed.
- 13. A summary sheet is required with the permit application. The summary will include the total attachments with no make-ready, total make-ready poles with pole heights, total replacements poles for attaching entity, and total Company replacement poles with pole heights. A cost estimate for each category is to be included. Material lists shall be furnished for attaching entity work and Company work separately.
- 14. Company engineering or its agent(s) will review pole moment calculations included in the completed application permits.

Items above are basic elements of Company's prerequisites for approval of a contractor to perform planning and engineering work in connection with pole permit applications to attach to Company owned distribution poles. Questions can be addressed to the Company's Joint Use Department at (816) 245-3684 for KCPL territory or (785) 575-8303 for Westar territory.

Pole Attachment and Overlashing Application Procedures

A pole attachment and/or overlash application shall include:

1. One set of marked up Company map depicting the street level route of the proposed attachment to Company poles. To aid in this effort, Company will provide maps of geographic areas under

- consideration to the proposed tenant as requested by the proposed tenant. The costs associated with providing maps to the proposed tenant will be paid by the proposed tenant.
- 2. If the proposed attachment is a new attachment to any Company pole(s) and includes a conductor(s) or cable(s), the proposed tenant must provide diameter, stringing tension (lbs.), and weight per foot of each conductor or cable along with horizontal loading of conductor or cable with ½" of ice and 4lb./sq.-ft. wind. If the proposed attachment is an overlash of the tenant's own facility, the proposed tenant must provide overall diameter and overall weight of the conductor or cable bundle along the horizontal loading of conductor or cable with ½" of ice with 4 lb./sq-ft wind.
- 3. Dimensions (height, width, and depth), weights, power requirements (maximum use watts, VARs, and source voltage) of any devices to support the tenant's facilities.
- 4. Company or approved vendor shall analyze each pole in the application, including the following, at attacher's sole expense, a listing of all existing and proposed facilities on the pole including actual attachment heights above ground (including top of pole). This shall include, but not be limited to, electric power primaries, secondaries and service drops, as well as trunk lines, laterals, and service drops of communication facilities. This shall include span lengths of each facility on the pole, as well as the heading direction (0 to 360 degrees in 5 degree increments, measured clockwise from magnetic north) of run of the facilities. To clarify, a pole line with a line degree change of 0 to 5 degrees shall be recorded as having a line angle of 0 degrees. Typically, a tangent structure pole line will have a 0 degree line angle. Similarly, if a pole line with a line degree change of 6 to 10 degrees shall be recorded as having a line angle of 5 degrees. Field data collected for each pole in the proposed route must be reported and summitted electronically with each application. For the propose of verifying calculations, Company engineers may require detailed field data on randomly selected poles within the route. The detailed field data must be supplied via the Pole & Facility Data Sheet. All information requested on the Pole & Facility Data sheet must be supplied including, but not limited to, a listing of ALL existing attached equipment. Equipment height must be measured from the base of the pose to the topmost pole attachment point (bolt). Conductors and cables will be measured from the base of the pole to the topmost pole attachment point (bolt).
- 5. Company or approved vendor shall analyze, at attacher's sole expense, each pole in the application, which would include the following: pole height as measured from the base of the pole, type (species), and class as marked on pole. If a pole is reinforced with a pole truss, the attaching company is responsible for collecting the necessary information for performing pole loading analyses on steel reinforced poles. The information necessary to collect includes:
 - Pre-reinforced pole class
 - Reinforced section pole class
 - Height of reinforcing
- 6. Results of Company pole loading analysis shall be sealed by a Professional Engineer registered in the state of application for each pole in the application. The analysis, completed by Company, shall include pole loading calculations for the final design including proposed attachment or overlash along with any required pole changes, additions, and make-ready work required to fulfil the pole loading and clearance requirements stated by or referenced in this standard. If the pole loading analysis for this scenario results in an overloaded pole, then the results of a pole loading analysis for the existing configuration shall be provided.

All pole loading analyses performed on a steel truss reinforced wood pole shall include two analysis runs per loading scenario, one where the pole is modeled at its pre-reinforced class, and the other where the pole is modeled at its reinforced class. The pole will be considered failed if the loading within the section of the pole above the steel bracing exceeds the pre-reinforced strength of the pole or the loading within the reinforced section of the pole exceeds the reinforced strength of the pole. The pole will be considered acceptable if the loading within the section of the pole above the steel bracing is below the pre-reinforced strength of the pole and the loading within the reinforced section of the pole is below the reinforced strength of the pole.

All guyed poles require a pole loading analysis. When Company load analysis is performed an assumed (3% of rated tensile strength) installed guy tension shall be used. The Pole and Facility Data Sheet will be submitted with percent loading of existing and proposed pole and individual guy stress. If pole is overloaded, a remedy shall be determined stating pole size, number of guys, and necessary guy lead lengths and orientation.

Contact Company Joint Use Department for clarification and examples of any of the above items.

Company requires all foreign attachers to utilize **NJUNS** (The National Joint Utilities Notification System) for <u>both permitting and project notification purposes</u>. The NJUNS ticket types are Pole Attachment Tickets (PA) and Pole Transfer Tickets (PT). Please refer to NJUNS.com for specific detail on gaining access and/or training.

Company currently uses a finite element analysis program called PLS-Pole (Power Line Systems Inc., 918 University Bay Drive, Madison, Wisconsin 53705, (608) 238-2171, Fax 238-9241) to calculate pole moments.

Each pole in the analysis shall be checked for class, guying, and length to determine if horizontal loading, vertical loading, and clearances are acceptable per Company Standards. Note that clearances must be checked first and if they do not meet NESC clearance requirements, then PLS-Pole will be run on the new clearances to determine if the pole class is acceptable. If pole loading or height do not meet pole class or clearance standards, the pole shall be changed to the appropriate pole class and/or height. All costs associated with this work will be paid by the tenant proposing the attachment or overlash to ensure that proper pole strengths meet the NESC. It is the responsibility of the tenant proposing the attachment or overlash to obtain all necessary easements for their facilities, and all costs associated with make ready work. Proof of easements shall be provided upon request.

Once the pole loading analysis is completed, the attacher signs an application approving construction costs, Company shall sign the application where designated "Approved for Construction" and provide a copy to the attacher. Thereafter, following completion of make-ready construction. Company shall sign and issue the permit thus authorizing attachment installation, providing a copy to the attacher. The attacher has up to 14 days to approve the estimate and provide payment.

All costs required to adjust facilities shall be paid by the attaching entity.

All costs associated with the application requiring Company clerical, engineering, and crew costs will be paid by the proposing tenant.

Overlashing third parties must have an overlash agreement in place with the tenant(s) being overlashed. Written consent of the overlash agreement must be provided to Company at the time of application. Each tenant shall install identifying tags on its equipment at every pole for easy identification. Tenants shall install tags at the time tenant's facilities are installed. Identifying tags must be installed on existing tenant facilities. The tags shall be located 2 feet away from a pole on the approaching side of poles on

streets. The tags shall be installed with two cable ties. If tenant fails to install identifying tags, Company may deem the attacher in violation of Company Standards.

Tenant tag number(s) will be assigned by Company electronically after a contract is signed. Company will issue tenant tag numbers to current tenants. New tenants will receive a tenant tag number assignment following a signed contractual agreement with Company. New and existing tenants shall have an assigned tenant tag number prior to installation of its facilities on Company poles. Tenants are responsible for obtaining their own tags. Tenants may use a preferred vendor of choice that can provide tenants tags according to the Tenant Tag Material Specifications (see Appendix D).

If a tenant's facilities are acquired by another entity, the acquiring entity must notify Company of said change. And provide maps and/or plats of acquired assets. The acquiring entity will be given one year from the date of acquisition in which to retag the acquired facilities. If the acquiring entity fails or refuses to retag its facilities within the one-year time allotted, Company may deem the attacher in violation of Company Standards.

Attachments to poles owned by other utilities will require an agreement between the proposed attacher and the pole owner.

Any tenant excavating at the base of an existing wood pole shall, prior to closing the excavation, install an Osmose Pole Wrap in accordance with Osmose installation instructions. All cost incurred for Osmose Pole Wrap will be paid by the tenant performing the excavation. Pricing and quantities can be obtained by Osmose Wood Preserving Inc., 980 Ellicott Street, Buffalo, NY 14209, 1-800-877-7653 x254.

All tenants on Company poles are assigned a positioning order on Company poles. Any new tenant will have a Company assigned position. The position order is from the bottom-up in the communications space on a pole. A physical area on a pole cannot be left unoccupied or reserved by a tenant. Therefore, if a proposing tenant is prepared to make an attachment and its assigned position is currently occupied by another tenant, the proposing tenants would be obligate to pay required make-ready costs necessitated by its proposed attachment, including the cost of rearrangement of existing tenant(s) so that all tenants are in the correct assigned positioning order.

Clearances

The vertical clearance from supply conductors or equipment to the communications conductors or equipment at the pole shall be 40 inches, up to 8.7 kV line to ground supply voltage.

On all new attachments, the vertical clearance of communications attachments from luminaires and traffic signal brackets shall be 40 inches, whether the bracket is effectively grounded or not. An exception will be made for overlashing attachments meeting all of the following criteria:

- An existing attachment is in place.
- The luminaire or traffic signal bracket is effectively grounded.
- The effectively grounded bracket is 20 inches from the existing communications attachments.
- The PLA indicates the overlashing will not cause the pole to go above capacity.

The vertical clearance from drip loops associated with luminaires and traffic signals shall be 12 inches at the pole.

The vertical clearance from communication to communication at the pole shall be 12 inches.

The vertical clearance from communication to communication midspan shall maintain the clearance at the pole.

The above-ground clearance under NESC Heavy loading for the Kansas City Terminal Railroad shall be 36 ft

All other communications clearances shall be 6 inches beyond what is required by NESC or other applicable codes.

These clearance requirements shall apply to installations by a tenant or by Company. Any work performed by Company or by the tenant after the initial installation of facilities shall preserve required clearances of all parties on the pole. If at any time after installation of facilities, a tenant becomes aware that one or more of its facilities is not a compliance with applicable clearance requirements, the tenant shall notify Company of the clearance violations and make all reasonable efforts to immediately bring its facilities into compliance. Tenant shall notify Company following its correction of the clearance violations. Tenant shall notify Company if the tenant has reason to believe that the noncompliance has been caused by the action of some party other that the tenant. However, such a belief will not excuse tenant from its obligation to remedy the clearance violations. Company shall also inform the tenant if Company becomes aware that the tenant's facilities are not in compliance with applicable clearance requirements. The tenant will have thirty (30) days to bring its facilities within compliance or Company may deem the attacher in violation of Company Standards.

Any new cable shall be attached to each pole currently in the cable's route and be sagged consistently with other existing facilities in the span to prevent damage to either the cable or the pole by wind displacement of the cable. During construction or deconstruction contractors or companies shall not directly or indirectly influence the sag and tension of Company wire or cause a pole to lean, thus jeopardizing the structural integrity and reliability of its distribution systems.

Poles shall not be boxed in and communication cables shall not be installed on both sides of a pole. Use of equipment brackets, standoffs, crossarms, extension arms, and davit arms are not permitted by attaching entities.

Maximum permissible pole height and class is limited to 65' class 1 poles, standard practice is to move up one pole height and class if additional clearance is needed.

Guys and Anchors

Tenants are responsible for their own down guys and anchors which shall be installed prior to communication conductors being pulled in. Attachments to Company's anchors is prohibited and will not be allowed. Proof of easements shall be provided upon request.

Insulators are to be installed in all down guys except down guys used for holding insulated head guys.

Wireless Attachment Devices

Company Joint Use application procedures and specifications apply to installation of wireless attachment devices and antenna.

Information required for wireless attachment applications:

- 1. Pole identification number
- 2. Address/ location
- 3. Plat of proposed work

- 4. Photo of proposed pole
- 5. Radio frequency information form
- 6. RF power output
- 7. Direction of antenna
- 8. Aerial construction details. (dimension, weight, connectivity)
- 9. Maximum power consumption

Only one wireless device (receiver, transmitter, or combination unit) less than 6x12x4 inches will be allowed per pole. Multiple wireless attachers are not permitted on a single pole.

A wireless unit may be attached to a streetlight bracket arm (Appendix C). If attached to the street light bracket arm, the wireless unit must be no more than 3 feet and no less than 6 inches from the pole the bracket arm is mounted to. Maximum weight of communication equipment shall not exceed 15 lbs. when installed on existing street light bracket arm.

Wireless devices must be installed by Company or a Company approved contractor that is approved to work in the supply space.

Supply and Communications

Amplifiers and equipment other than wireless devices will not be allowed on poles. All communications devices shall have a disconnected switch, which is located at the meter stand. This switch will enable Company authorized workers to disconnect the antennae and the battery backup, thus avoiding RF exposure.

- 1. A unistrut Meter Stand assembly or an approved pedestal enclosure mounted next to the pole on the ground shall be used.
- 2. A service application shall be required to provide power to the equipment. An extension may be required if existing facilities are not capable of supplying the required voltage and capacity.
- 3. Service risers and pole mounted equipment (Appendix C) must be installed by Company or a Company approved contractor that is approved to work in the supply space.
- 4. Service equipment shall be furnished to the customer.
- 5. An approved self-contained meter socket shall be furnished by Communication Company.
- 6. Communication company supply cable shall be in conduit, communications conduit may be in joint trench meeting requirements of Electric Service Standards 10.19.
- 7. A driven ground is required at each equipment location.
- 8. Messenger, disconnect, and metal case to power supply shall be connected to the ground with #6SD bare copper bonding wire.
- 9. Customer's power leads shall extend out of weather head enough for making connection on secondary bus or transformer.

Pole Top Antenna

Pole top antenna requirements are as follows:

- 1. The design and mounting requirements of all antennas must be approved by Company Distribution Standards prior to installation.
- 2. Only one (1) antenna shall be installed per pole.
- 3. Antenna must be installed by Company or a Company approved contractor that is approved to work in supply space.
- 4. No work shall be completed in the supply space without prior approval of the Company Operating Authority.
- 5. All pole locations must be approved by Company prior to installation.

- 6. All poles must be bucket truck accessible.
- 7. Antennas should not be installed on equipment poles. Antennas and equipment other than conduit and required supports shall not be installed in the primary zone.
- 8. The minimum size of all antenna poles will be minimum ANSI class 3. Company Distribution Standards shall be contacted when the height above the ground exceeds 60 feet.
- 9. The height of all poles used to mount antennas must be increased by a minimum of five (5) feet above the existing pole's height at Attacher's expense.
- 10. Antenna coax cable must be installed in two (2) inch maximum diameter Sch. 40 PVC conduit. Conduit attachment supports should be installed every five (5) feet. Conduit under one (1) inch may be attached with ground wire molding staples. Riser shall comply with service riser standard found in Appendix C.
- 11. When required, two (2) RF warning signs must be installed. A sign shall be installed near the pole top at the level where the safe approach distance ends for FCC General Population/uncontrolled power levels. The second sign shall be installed near the base of the pole. These signs should read, "Warning- antenna approach distance is XX feet." The sign should include the antenna owner's name and phone number. When Company work is required within the antenna approach distance, workers will disconnect the RF source.
- 12. The antenna power source must have a lockable disconnect installed to allow the antenna and battery backup to be de-energized before work is performed within the area designated by the RF Warning signs.
- 13. Disconnect, meter and antenna boxes must be installed in accordance with drawing for Supply and Communication Equipment in Appendix C.
- 14. The use of pole top extensions is prohibited.
- 15. Pole tops must be treated and covered for pole roof preservation.
- 16. A driven pole ground is required for each antenna pole.
- 17. If a pole with communications equipment installed is to be replaced, NJUNS will be utilized to notify the attacher to relocate their equipment. If the pole is damaged or must be immediately replaced, the attacher's equipment may be removed to the local Company Service Center and the attacher notified.

Design Criteria

All pole loading analysis shall be to Grade B construction criteria.

The soil class for anchoring purposes shall be assumed to be Soil Class 6, according to the Chance "Encyclopedia of Anchoring," unless site conditions are known and differ from this assumption.

Any request for attachment to Self-Supporting Structures (Laminated Wood, Steel, Fiberglass, etc.) must be evaluated by the Company.

Midspan poles shall not be used as a make-ready remedy.

One Touch Make Ready

Company understands the concept of the **One Touch Make-Ready (OTMR)** effort, which will require coordination and pre-approval between the proposed attacher and the existing attachers in order to conduct the rearrangement of existing facilities within the communications space to accommodate the new attachment on Company owned Distribution poles. The OTMR option DOES NOT apply to the supply space.

Sag/Tension Assumptions

When the observed sag in the field is determined to differ from the values shown in the appropriate sag tables, it is acceptable to use the following assumed design tensions when the new tension value in SAG10 is compared to the sag value observed in the field at the appropriate temperature to ensure the assumption is accurate:

Primary Wire:

For primary conductors use 100% of the tension value when standard sag is present.

For primary conductors use 50% of the full tension value when the sag is double the standard sag.

For primary conductors use 10% of the full tension value when the sag is significant (reduced tension span).

Secondary & Service Wire:

For secondary conductors use no more than 30% of the full tension value when standard sag is present.

For secondary conductors use 15% of the full tension value when the sag is double the standard sag normally present.

For secondary conductors use 10% of the tension value when the sag is significant (reduced tension span).

For all service drops use 15% of the full tension value.

Company reserves the right to revise and update this document and supporting reference design and service standards.

Service Drops

Service Drops (cables extending one span from the final pole to the customer's premises) are for the sole purpose of providing new service to a customer. ATTACHER shall have the right to attach a service drop provided, however, that service drops:

- Are an extension of a previously licensed Attachment and are installed in compliance with NESC and these guidelines.
- Are supported from the attacher's strand measured 24" horizontally from the center of the pole on side closest to the customers attachment point. In no case will the communication drop cross the face of the pole.
- The ATTACHER submits an application for the service drop attachments within 10 days.
- The service drop attachments are subject to a post-installation inspection by Company or its designated inspector to ensure that the attachments comply with NESC and Company Electric Service Standards.

Service drop attachments not reported to Company within 10 days of installation will be treated as unauthorized installations.

Additional Considerations

Meters

No electric meters are allowed on Company poles. All meters will need to be in standalone pedestals or in an attachers cabinet on the ground.

Wi-Fi & Small Cell

Company-owned street light poles were not designed for the additional loading of Wi-Fi & Small Cell antennas, therefore a pole loading analysis would be required prior to mounting antennas to street light poles. A new pole will likely be required to accommodate Wi-Fi or Small Cell antennas. City approval for taller poles will also be required prior to a changeout. Electric service will not be fed from the street light circuit so attacher will be required to cover the cost for dedicated underground service line to a secondary pedestal 10' from the pole.

Strandmount Equipment

Company must review specs including weight and dimensions for any proposed strandmount equipment.

Company reviews the right to require a sample installation of the proposed equipment at a Company training center before approving new equipment.

Strandmounted equipment must maintain clearances between existing attachers and maintain space for Company employees to climb the pole with fall restraint devices.

Pole Change-Outs

Company will not be responsible for Pole Change-Outs.

Once a Company pole is removed and facilities transferred, attachments have 10 days to transfer their facilities to the new pole, unless other reasonable mutually acceptable arrangements are made.

Other

Climbing space and working space shall be maintained in accordance with NESC rules 236 and 237.

All vertical runs installed by tenant shall be placed in conduit and attached to pole using 7" standoff brackets. U-ground and other protective covering are prohibited. Location of tenant risers shall not occupy more than 180° of pole section periphery (See Appendix C).

Horizontal attachments to Company poles must be made by use of a three-bolt suspension clamp with a center trough bolt.

Use of equipment brackets, standoffs, crossarms, extension arms, and davit arms are not permitted by attaching entities.

Communication facilities will not be allowed on temporary Company poles, and poles which are utilized solely for area lights (dusk to dawn).

A 2-inch minimum vertical spacing must be maintained between through bolt holes.

Tenants shall make attachments using existing open bolt holes where available and applicable to meet the clearance requirements stated above. New bolt holes for attachments should only be drilled if necessary. If existing bolt holes cannot be used, the attaching tenant must insert one Osmose brand FLUROD and appropriately sized Osmose treated tapered dowel rod to cap each open end of each bolt hole abandoned from the make-ready work associated with the attachment. Installation of the Osmose FLUROD or treated dowel rods must be made in accordance with Osmose installation instructions. The attaching tenant will pay all costs incurred for Osmose FLUROD and treated dowel rods. Pricing and quantities can be obtained from Osmose Wood Preserving Inc., 980 Ellicott Street, Buffalo, NY 14209, 1-800-877-7653 x254.

Attaching tenants must remove all their out-of-service facilities form Company poles at the time of new attachment or overlash.

All communication messengers shall be bonded to electrical ground a minimum of 4 times per mile.

Pole space and loading capacity may be reserved by Company for future electrical system use as identified in the Company Distribution System Infrastructure Utilization Plan.

Pole and Facility Data Sheets

3
pe and size
(ft) or Guy lead (ft) ²
g ³
Et)
(ft)
4
4
pe and size
(ft) or Guy lead (ft) ²
g^3
it)
(ft)
4
tion Sheet" for additional attachments
nent Owner
pe and size
(ft) or Guy lead (ft) ²
g^3
t)
;
(ft)
4
, therefore 2 evaluations are required)
le reinforced with steel to make it a class
uate the pole section above the steel at
evaluate the reinforced section at class 1
_

Notes: 1. 8' or 10' xarm, standoffs, crowsfoot, wishbone, double ckt. (vertical or horizontal), 8' or 10' deadend etc.

- 2. If equipment is a guy, provide lead length (deadends only)
- 3. The bearing is with respect to Magnetic North, therefore the bearing for before and after spans are required on all conductors.
- 4. Midspan height required on lowest communications attachment and service drops.
- 5. Final tensions under NESC Heavy loading conditions are required on all conductors that have line or pole angles.
- 6. Maximum percent pole loading.

Pole and Facility Data Sheet (Continuation)

Attachment Owner 5	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft) ²	
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ³	
Attachment Owner 6	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft) ²	
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 7	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft) ²	
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 8	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft) ²	
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 9	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft) ²	
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	

Attachment Owner 10	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft)	2
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 11	
Wire/Equipment type and size	2
Before span length (ft) or Guy lead (ft)	
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 12	
Wire/Equipment type and size	2
Before span length (ft) or Guy lead (ft)	
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 13	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft)	2
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 14	
Wire/Equipment type and size	
Before span length (ft) or Guy lead (ft)	2
Before span bearing ³	
After span length (ft)	
After span bearing ³	
Attachment height (ft)	
Midspan height (ft) ⁴	
Final Tension ⁵	
1 mai 10051011	I

Date:

1!

Pole Attachment Cases

KCP&L Territory

Case 1: Shielded 3-phase w/ 2 attachments (See results at the end of this Section).

- Pole: 45' class3 Southern Pine
- Top of pole @ 38.5'
- Neutral conductor: 3/0 ACSR @ 38.5'
- Primary conductor: 3-phase 477 AA on 8' crossarm @ 32.75'
- 5-bundle cable tv (2-1/2", 2-3/4", & 1-.489") @ 20'
- 2" swb @18' (midspan @ 16')
- Before span 250' (all conductors)
- After span 170' (all conductors)
- Proposal: Install 3-bundle cable (2–1/2" & 1–3/4") @ 21'

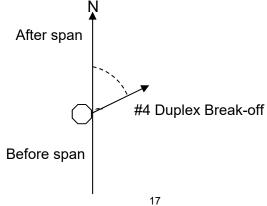
Case 2: Shielded 3-phase w/ 2 attachments and a steel reinforcing truss

- Pole: 45' class 3 Southern Pine
- Top of pole @ 38.5'
- Neutral conductor: 3/0 ACSR @ 38.5'
- Primary conductor: 3-phase 477 AA on 8' crossarm @ 32.75'
- 20' steel truss install making pole a class 1 pole (below truss)
- 3-bundle fiber optic (2-1/2" & 1-3/4") @ 20'
- 5-bundle cable tv (2–1/2", 2–3/4", & 1-.489") @ 19'
- 2" swb @ 18' (midspan @ 16')
- Before span 230' (all conductors)
- After span 190' (all conductors)
- Proposal: Install 3-bundle fiber optic (2–1/2" & 1–3/4") @ 21'

Case 3: Shielded 3-phase w/ transformer bank, secondary, and 3 attachments

- Pole: 50' class 3 Southern Pine
- Top of pole @ 43'
- Neutral conductor: 3/0 ACSR @ 43'
- Primary conductor: 3-phase 477 AA on 8' crossarm @ 38'
- 3-phase 100 kVA transformer bank @ 30.75'
- 3/0 triplex secondary @ 28'
- 3-bundle fiber optic (2–1/2" & 1–3/4") @ 23'
- 4-bundle cable tv (2-1/2" & 2-3/4") @ 22'
- 2" swb @ 20' (midspan @ 17')
- Before span 265' (all conductors)
- After span 235' (all conductors)
- Proposal: Install 3-bundle fiber optic (2–1/2" & 1–3/4") @ 24'

Case 4: Unshielded 3-phase deadend


- Pole: 40' class 3 Southern Pine
- Top of pole @ 34'
- Primary conductor: 3-Phase #2 ACSR on 8' deadend arm @ 33.25'
- Neutral conductor: #2 ACSR @ 29.4'
- Down guy @ 32.25', lead @ 32.25' (Initial tension = 3% of rated strength)
- Down guy @ 31.25', lead @ 31.25' (Initial tension = 3% of rated strength)
- Before span 0' (all conductors)
- After span 180' (all conductors)
- Proposal: Install 3-bundle fiber optic (2–1/2" & 1–3/4") @ 18'

Case 5: Shielded 3-phase on standoffs, and 5° line angle

- Pole: 50' class 3 Southern Pine
- Top of pole = 43
- Neutral conductor: #2 ACSR @ 43'
- Primary conductor: #2 ACSR on standoff @ 40'
- Primary conductor: #2 ACSR on standoff @ 36.67 (on opposite side of pole from the other 2 phases)
- Primary conductor: #2 ACSR on standoff @ 33.34'
- Before span 175' (all conductors)
- After span 125' (all conductors)
- After span bearing = 5° and before span bearing = 180° (all conductors)
- Proposal: Install 3-bundle fiber optic (2–1/2" & 1–3/4") @ 20'

Case 6: Unshielded 3-phase w/ streetlight and secondaries

- Pole: 40' class 3 Southern Pine
- Top of pole = 34'
- Primary conductor: 3-phase #2 ACSR on 8' crossarm @ 33.25'
- Neutral conductor: #2 ACSR @ 29.4'
- Streetlight @ 27'
- #4 Duplex @ 26.5'
- Above conductors have after span bearing = 360° and before span bearing = 180°
- Before span 200' (conductors above)
- After span 160' (conductors above)
- 75' #4 Duplex break-off @ 26.5' (midspan @ 23'), bearing = 78° (see figure below).
- Proposal: Install 3-bundle cable (2–1/2" & 1–3/4") @ 20'

Shown below are the methods used to determine the vertical and horizontal loads for the conductors of Cases 1 and 5.

Case #1

3/0 ASCR

- Vertical Load = 210 ft * 1.5 (OCF) * 0.8538 lbs/ft = 268.947 lbs.
- Wind Load = 210 ft * 2.5 (OCF) * 0.5007 lbs/ft = 262.868 lbs.

477 AA (each)

- Vertical Load = 210 ft * 1.5 * 1.2518 lbs/ft = 394.317 lbs.
- Transverse Load = 210 ft * 2.5 * 0.5977 lbs/ft = 313.793 lbs.

3 bundle cable

- Vertical Load = 210 ft * 1.5 * 1.9744 lbs/ft = 621.936 lbs.
- Transverse Load = 210 ft * 2.5 * 1.0000 lbs/ft = 525.000 lbs.

5 bundle cable

- Vertical Load = 210 ft * 1.5 * 2.9790 lbs/ft = 938.389 lbs.
- Transverse Load = 210 ft * 2.5 * 1.4130 lbs/ft = 741.825 lbs.

2" SWB

- Vertical Load = 210 ft * 1.5 * 4.0110 lbs/ft = 1263.460 lbs.
- Transverse Load = 210 ft * 2.5 * 1.0833 lbs/ft = 568.733 lbs.

Case #5

The before and after span bearings result in a line angle of 5°, therefore the bi-sector angle is 2.5°.

#2 ASCR (each)

- Vertical Load = 150 ft * 1.5 (OCF) * 0.5987 lbs/ft = 134.715 lbs.
- Transverse Load = Wind + Tension = [150 ft * 2.5 (OCF) * 0.4387 lbs/ft * Cos 2.5] + [2 * 1194 lbs (Tension) * 1.65 (Tension OCF) * Sin 2.5] = 336.216 lbs.

3 bundle cable

- Vertical Load = 150 ft * 1.5 * 1.9744 ft/lb = 444.240 lbs.
- Transverse Load = Wind + Tension = [150 ft * 2.5 * 1.0 lbs/ft * Cos 2.5] + [2 * 2246 lbs (Tension) * 1.65 * Sin 2.5] = 697.941 lbs.

Pole and Facility Data Sheet

Pole ID#	CASE 1
Pole Height (stamped)	45
Pole Class	3
Pole Type (S. Pine, Douglas Fir, Cedar, etc.)	S. PINE
Top of pole height (ft)	38.5
Type of Construction ¹	8' XARM
Shielded (Y or N)	Y
Attachment Owner 1	KCPL
Wire/Equipment type and size	3/0 ACSR
Before span length (ft) or Guy lead (ft) ²	250
Before span bearing ³	0
After span length (ft)	170
After span bearing ³	180
Attachment height (ft)	38.5
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 2	KCPL
Wire/Equipment type and size	3 - 477 AA
Before span length (ft) or Guy lead (ft) ²	250 s
Before span bearing ³	0
After span length (ft)	170
After span bearing ³	180
Attachment height (ft)	32.75
Midspan height (ft) ⁴	
Final Tension ⁵	

Attachment Owner 3	CATV
Wire/Equipment type and size	2-1/2", 2-3/4" & 1489"
Before span length (ft) or Guy lead (ft) ²	250
Before span bearing ³	0
After span length (ft)	170
After span bearing ³	180
Attachment height (ft)	20
Midspan height (ft) ⁴	
Final Tension ⁵	
Attachment Owner 4	SWB
Wire/Equipment type and size	2"
Before span length (ft) or Guy lead (ft) ²	250
Before span bearing ³	0
After span length (ft)	170
After span bearing ³	180
Attachment height (ft)	18
Midspan height (ft) ⁴	16
Final Tension ⁵	

Date: 8/20/2000

se "Continuation Sheet" for additional attachments

Proposed Attachment Owner	NEW
Wire/Equipment type and size	2-1/2" & 1-3/4"
Diameter (in.)	2
Weight (lbs/ft)	0.42
Before span length (ft) or Guy lead (ft) ²	250
Before span bearing ³	0
After span length (ft)	170
After span bearing ³	180
Attachment height (ft)	21
Midspan height (ft) ⁴	
Final Tension ⁵	

Existing loading (%) ⁶	87
Loading with attachment (%) ⁶	100

Steel truss reinforced poles (The unreinforced section is 2 classes lower then the reinforced section, therefore 2 evaluations are required)

Max. % loading above steel (Existing)	
Max. % loading reinforced section (Existing)	
Max. % loading above steel (w/ attachment)	
Max. % loading reinforced section (w/ attach)

Example: Class 3 pole reinforced with steel to make it a class 1 pole. Evaluate the pole section above the steel at class 3 and evaluate the reinforced section at class 1.

Remedy for Overloaded Pole or Clearance Violations: Replace pole with a 45' cl-1 pole.

Notes: 1. 8' or 10' xarm, standoffs, crowsfoot, wishbone, double ckt. (vertical or horizontal), 8' or 10' deadend etc.

- 2. If equipment is a guy, provide lead length (deadends only)
- 3. The bearing is with respect to Magnetic North, therefore the bearing for before and after spans are required on all conductors.
- 4. Midspan height required on lowest communications attachment and service drops.
- 5. Final tensions under NESC Heavy loading conditions are required on all conductors that have line or pole angles.
- 6. Maximum percent pole loading.

Setup Parameters for Pole Loading Analysis

Refer to the parameters listed below to perform pole loading analyses. The analyses shall be performed using an approved software program.

- 1. Load analysis performed per current NESC Grade B construction.
- 2. Linear analysis is used on un-guyed single structures. Non-Linear analysis is used for guyed single structures. Questions and clarification may be directed to Company as situations arise.
- 3. Poles (Design stress values pertain to the ANSI O5.1-1992 for Wood Poles Specifications and Dimensions)
 - Southern Pine; modulus of elasticity = 2278 ksi, design stress = 8 ksi, weight density = 60 lbs/cubic ft.
 - Douglas Fir; modulus of elasticity = 3015 ksi, design stress = 8 ksi, weight density = 40 lbs/cubic ft.
 - Western Red Cedar; modulus of elasticity = 1431 ksi, design stress = 6 ksi, weight density = 60 lbs/cubic ft.

4. Wood Cross Arms

- 8 ft Douglas Fir crossarm; 3.5" x 4.5", weight = 31 lbs, A-ph = 44", B-ph = 15", & C-ph = 44" from pole center.
- 10 ft Douglas Fir crossarm; 3.5" x 4.5", weight = 38 lbs, A-ph = 56", B-ph = 15.5", & C-ph = 56" from pole center.
- 8 ft Douglas Fir deadend; 3.75" x 5.75", weight = 129 lbs, A-ph = 43", B-ph = 0", & C-ph = 43" from pole center.
- 10 ft Douglas Fir deadend; 3.75" x 5.75", weight = 185 lbs, A-ph = 55", B-ph = 0", & C-ph = 55" from pole center.
- 26" Douglas Fir crossarm brace; 1" x 1.75", attached to 8' & 10' crossarms 19" from center of pole on each side, attached to pole 15.5" below crossarm.
- 5. See the list of Additional Cross Arms, Guywire, Standoff Brackets and Anchors (tables attached)
- 6. Transformer, capacitor bank, & streetlight brackets are modeled as davit arms.
- 7. Insulators
 - Post insulators (for crossarms attachments); weight = 2 lbs, vertical down capacity = 1500 lbs, vertical up capacity = 1000 lbs, transverse and longitudinal capacities = 1500 lbs. Post 0.5" above crossarm.
 - Clamps (for pole attachments) = 2000 lbs capacity.
- 8. Dead load factor = 1.65.
- 9. Wind = 2.5 * 4 psf = 10 psf, where 2.5 = overload capacity factor (OCF).
- 10. Wood pole strength factor = 0.65.

List of Additional Cross Arms, Guywire, Standoff Brackets and Anchors

10 ft Fiberglass Crossarms

KCP&L

	KOFAL	Westal	
Tangent	Geotek 2000 series, 10' x 4.63"h x 3.63"d, wt = 47 lbs, A = 56", B = 19", & C = 56" from pole center.	Geotek 2000 series, 10' x 4.63"h x 3.63"d, wt = 35 lbs, A = 56", B = 21", & C = 56" from pole center.	
Tangent	,	•	
Brace	N/A		
Deadend	Geotek 3000 series, 10' x 3.63"h x 4.63"d, wt = 81 lbs, A = 54", B = 0", & C = 54" from pole center. For 4-wire flat, additional attachments at \pm 1-19".	Geotek 3000 series, 10' x 3.63"h x 4.63"d, wt = 72 lbs, A = 54", B = 0" on pole 5" above arm, & C = 54" from pole center. For 4-wire flat, additional attachments at +/- 19".	
	Guywire (7 strand, class A)		
	KCP&L	Westar	
	3/8" HS GSS (before 2005), diam=0.375", wt=0.273 lb/ft, RBS=10,800 lb	3/8" HS GSS (before 2/22/18), diam=0.375", wt=0.273 lb/ft, RBS=10,800 lb	
	5/16" EHS GSS (after 2005), diam=0.312", wt=0.205 lb/ft, RBS=11,200 lb	3/8" EHS GSS (after 2/22/18), diam=0.375", wt=0.273 lb/ft, RBS=15,400 lb	
	Legacy 7/16" EHS GSS, diam=0.438", wt=0.399 lb/ft, RBS=20,800 lb	7/16" EHS GSS, diam=0.438", wt=0.399 lb/ft, RBS=20,800 lb	
	1/2" EHS GSS, diam=0.5", wt=0.517 lb/ft, RBS=26,900 lb	1/2" EHS GSS, diam=0.5", wt=0.517 lb/ft, RBS=26,900 lb	
	Standoff Bracket		
	KCP&L	Westar	
	16" standoff bracket, wt=3.4 lbs, max. vertical load = 1400 lbs, max. longitudinal load = 1100 lbs, max. transverse load = 2500 lbs.	18" standoff bracket, wt=15.8 lbs, max. vertical load = 2250 lbs, max. longitudinal load = 1400 lbs, max. transverse load = 10,000 lbs.	
	Anchors		
	KCP&L	Material Code/Item ID	
	Square Helical 11-5/16", 1-3/8" shaft, 3/4" rod	407070	
	Square Helical 8", 1-3/8" shaft, 5/8" rod	407005	
	Square Helical 10" Double, 1-3/8" shaft, 1" rod	407003	
	Triple Helix 10"x11-5/16"x13-1/2"	407710	

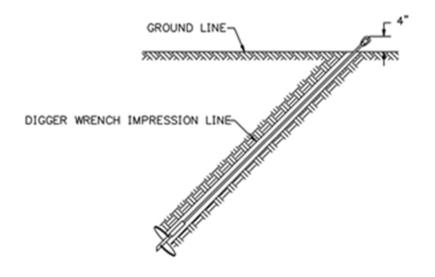
Westar

Anchors

Square Helical 8", 2-1/4" shaft, 3/4" or 1" rod

Square Helical 10" Single, 2-1/4" shaft, 3/4" or 1" rod

Square Helical 10" Double, 1-3/8" shaft, 3/4" or 1" rod


Westar	Material Code/Item ID
6" Screw	7560186
8" Expanding, 3/4" rod	0165400
11 5/16" Helix, 1" rod	0164800
15" Helix, 1" rod	0164900
2-8" Helix, 1" rod	0164700
Expanding Rock, 3/4"x3/4"x53"	0165701
Expanding Rock, 3/4"x3/4"x72"	7560184

407713

407714

407715

See below KCPL & Westar Energy Standards for Anchor/Soil Information

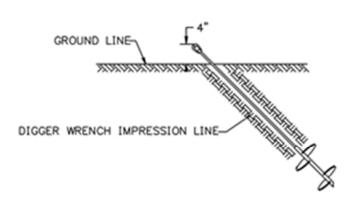
CLASS	DESCRIPTION OF SOIL	HOLDING STRENGTH	MAXIMUM GUYS
		(LBS)	PER ANCHOR
4	Gravel; Compact Gravel And	5/8" ROD	1 - 5/16"
	Sand Claypan	*16000	
5	Medium Firm Clay; Loose Sand	5/8" ROD	1 - 5/16"
	And Gravel; Compact Course Sand	*16000	
6 S	oft Plastic Clay; Loose Coarse San	d 5/8" ROD	1 - 5/16"
	Clay Silt; Compact Fine Sand	15000	
7	Fill; Loose Fine Sand; Wet Clays;	5/8" ROD	1 - 5/16"
	Silt	12000	

Ultimate strength of rod controls.

Note:

- The holding strength of the anchor given is dependent on either the soil class, anchor diameter, or rod strength.
- The maximum number of guys per anchor is given to ensure that the anchor will
- not be overloaded when the guy lead lengths are at their minimum.

 3. Expanding anchors shall only be used if soil conditions do not permit the use of screw and high torque anchors, or if installation equipment is unavailable.


Installation:

- Begin anchor in near vertical position.
- 2. When anchor has a good start, retract boom to correct anchor angle.
- Avoid excessive uplift. When locking dogs reach ground level, stop installation.
- 4. Complete installation by installing eye nut.

Additional Equipment:

- 1. Anchor rod, nevercreep 1" x 10' STK# 429-890.
 2. Anchor rod, screw type 1" x 10' STK# 407-706.
 3. Anchor rod, screw type 1" x 7' STK# 407-705.
 4. Anchor rod, screw type 3/4" x 7' STK# 407-703.
 5. Anchor rod, screw type extension 1" x 3-1/2' STK# 407-704.
 6. Anchor rod, screw type 5/8" x 3-1/2' STK# 407-702.

SCREW ANCHOR SINGLE HELIX

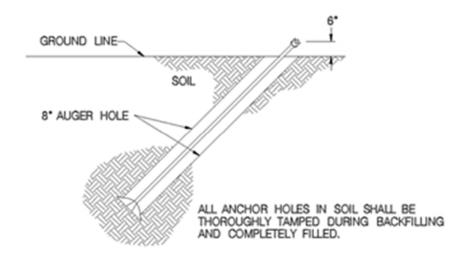
CLASS	DESCRIPTION OF SOIL	HOLDING STRENGTH	MAXIMUM GUYS
		(LBS)	PER ANCHOR
2	Dense Clay, Compact Gravel; Dense	1" ROD - *36000	3 - 5/16"
	Fine Sand; Slate; Schist; Sandstone	3/4" ROD - *23000	2 - 5/16"
3	Shale; Broken Bed Rock; Hardpan;	1" ROD - *36000	3 - 5/16"
	Compact Clay-Gravel Mixtures	3/4" ROD - *23000	2 - 5/16"
4	Gravel; Compact Gravel And	1" ROD - 33000	3 - 5/16"
	Sand Claypan	3/4" ROD - *23000	2 - 5/16"
5	Medium Firm Clay, Loose Sand	1" ROD - 28000	3 - 5/16"
	And Gravel; Compact Course Sand	3/4" ROD - *23000	2 - 5/16"
6	Soft Plastic Clay, Loose Coarse Sand	3/4" ROD - 23000	2 - 5/16"
	Clay Silt; Compact Fine Sand		
7	Fill; Loose Fine Sand; Wet Clays;	3/4" ROD - 20000	2 - 5/16"
	Silt		

* Ultimate strength of rod controls.

Note:

- The holding strength of the anchor given is dependent on either the soil class, anchor diameter, or rod strength.
- 2. The maximum number of guys per anchor is given to ensure that the anchor will not be overloaded when the guy lead lengths are at their minimum.
- 3. Expanding anchors shall only be used if soil conditions do not permit the use of screw and high torque anchors, or if installation equipment is unavailable.

Installation:


- 1. Begin anchor in near vertical position.
- 2. When first helix is buried, make angular adjustment for the correct anchor angle. 3. Avoid excessive uplift. When locking dogs reach ground level, stop installation.
- 4. Complete installation by installing eye nut..

Additional Equipment:

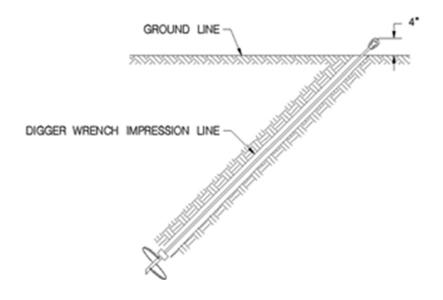
- 1. Anchor, multi-helix screw type guy adapter, double eye STK# 407-709. 2. Anchor, multi-helix screw type extension, 5 STK# 407-707. 3. Anchor, multi-helix screw type guy adapter STK# 407-708.

- 4. Anchor, multi-helix screw type 3 helix, 10" x 11-5/16" STK# 407-710.

SCREW ANCHOR DOUBLE HELIX

CLASS	DESCRIPTION OF SOIL	HOLDING STRENGTH (LBS)	MAXIMUM GUYS PER ANCHOR
3	Shale; Broken Bed Rock; Hardpan;	56" ROD	1 - 5/16"
	Compact Clay-Gravel Mixtures	*16000	
4	Gravel; Compact Gravel And	56" ROD	1 – 5/16"
	Sand Claypan	*16000	
5	Medium Firm Clay; Loose Sand	56" ROD	1 – 5/16°
	And Gravel; Compact Course Sand	*16000	
6	Soft Plastic Clay; Loose Coarse Sand	56" ROD	1 – 5⁄16°
n,	Clay Silt; Compact Fine Sand	15000	
7	Fill; Loose Fine Sand; Wet Clays;	56" ROD	1 – 5/16"
	Silt	10000	

^{*} Ultimate strength of rod controls.


- The holding strength of the anchor given is dependent on either the soil class, anchor diameter, or rod strength.
- The maximum number of guys per anchor is given to ensure that the anchor will not be overloaded when the guy lead lengths are at their minimum
- Expanding anchors shall only be used if soil conditions do not permit the use of screw and high torque anchors, or if installation equipment is unavailable.

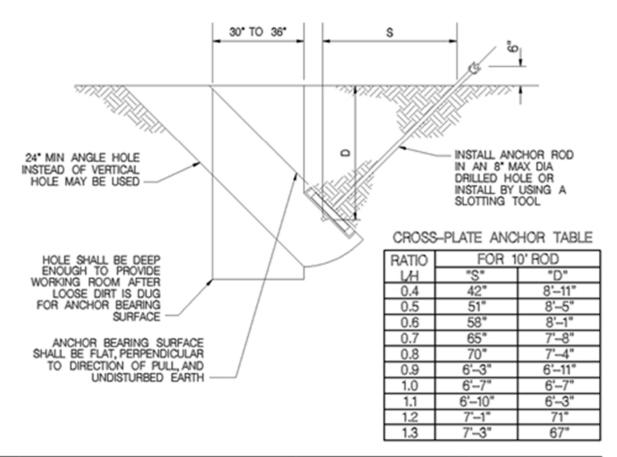
Installation:

- The hole shall be drilled at an angle nearest to the angle the guy will be oriented.
- Insert the anchor in its closed position to the bottom of the hole to where the eye hole will extend 6" above the ground line when it is expanded.
- 3. Strike the top of the anchor until the leaves are fully expanded.
- 4. The effectiveness of this anchor is dependent upon the thoroughness of backfill tamping.

EXPANDING ANCHOR

DWG REV: 12/01/03 DWG: 420.1-54

CLASS	DESCRIPTION OF SOIL	OF SOIL HOLDING STRENGTH (LBS)	
2	Dense Clay; Compact Gravel; Dense	5/8" ROD	1 - 5/16"
	Fine Sand; Slate; Schist; Sandstone	*16000	
3	Shale; Broken Bed Rock; Hardpan;	5/8° ROD	1 – 5/16"
	Compact Clay-Gravel Mixtures	*16000	
4	Gravel; Compact Gravel And	5/8" ROD	1 - 516"
	Sand Claypan	*16000	


^{*} Ultimate strength of rod controls.

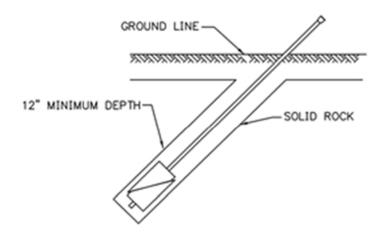
- The holding strength of the anchor given is dependent on either the soil class, anchor diameter, or rod strength.
- The maximum number of guys per anchor is given to ensure that the anchor will not be overloaded when the guy lead lengths are at their minimum.
- 3. High torque anchors shall only be used in dense soil due to high cost of the anchor.
- Expanding anchors shall only be used if soil conditions do not permit the use of screw and high torque anchors, or if installation equipment is unavailable.

Installation:

- 1. Begin anchor in near vertical position.
- 2. When anchor has a good start, retract boom to correct anchor angle.
- 3. Avoid excessive uplift. When locking dogs reach ground level, stop installation.
- Complete installation by installing eye nut.

SCREW ANCHOR HIGH TORQUE

CLASS	DESCRIPTION OF SOIL	HOLDING STRENGTH	MAXIMUM GUYS
		(LBS)	PER ANCHOR
2	Dense Clay; Compact Gravel; Dense	1" ROD	3 - 5/16"
	Fine Sand; Slate; Schist; Sandstone	34000	1 – 1/2"
3	Shale; Broken Bed Rock; Hardpan;	1" ROD	3 - 5/16"
	Compact Clay-Gravel Mixtures	34000	1 – 1/2"
4	Gravel; Compact Gravel And	1" ROD	3 - 5/16°
	Sand Claypan	29000	1 – 1/2"


- The holding strength of the anchor given is dependent on either the soil class, anchor dimension, or rod strength.
- The maximum number of guys per anchor is given to ensure that the anchor will not be overloaded when the guy lead lengths are at their minimum.
- Cross plate anchors shall only be used for multiple guy attachments, where soil conditions do not permit the use of a double helix anchor.

Installation:

- 1. Drill a vertical or angled hole.
- Undercut the hole so that the anchor plate can be installed at a right angle to the guy.
- 3. Cut a narrow rod trench with a trenching tool or a small auger.
- Assemble rod to anchor and install the anchor so that the rod is aligned within 10 degrees of the guy.
- Thoroughly backfill and tamp the anchor hole and rod trench. If soil conditions do not allow for tight compaction, concrete backfill may be used.

CROSS PLATE

DWG REV: 12/01/03	DWG:	420.1-56
-------------------	------	----------

CLASS	DESCRIPTION OF SOIL	HOLDING STRENGTH	MAXIMUM GUYS
		(LBS)	PER ANCHOR
		1" ROD	3 - 5/16"
1	SOLID BED ROCK	36000	1 - 1/2"
		3/4" ROD	2 - 5/16"
		23000	0 - 1/2"

- The holding strength of the anchor given is dependent on either the soil class, anchor diameter, or rod strength.
- The maximum number of guys per anchor is given to ensure that the anchor will not be overloaded when the guy lead lengths are at their minimum.
- 3. Rock anchors shall only be installed into solid rock
- 4. When the rock anchor is installed properly, the strength of the rod controls.
- 5. For triple eye rod, w/ 1" diameter & 96" length use STK# 407-701.

Installation:

- A hole shall be drilled at least 12" into solid rock, this does not include soil above the rock. Make sure the diameter of the hole is 1/8" larger than the diameter of the anchor. The hole shall be drilled at an angle nearest to the angle the guy will be oriented.
- Drop the anchor in the hole. Put a bar throught the eye of the anchor rod. Turn the rod until the anchor is firmly expanded against the side of the hole.

ROCK ANCHOR

DWG REV: 1/10/08 DWG:**420.1-57**

SOIL-ANCHOR HOLDING STRENGTH -POUNDS (STRENGTH FACTOR INCLUDED)

CLASS	DESCRIPTION OF SOIL	ROCK 34" ROD	ROCK 1* ROD	EVPANDING 58" ROD	SCREW 56" ROD	CROSS PLATE 1" ROD	DOUBLE HELIX 1" ROD
1	SOUD BED ROCK	23000	36000				
2	DENSE CLAY; COMPACT GRAVEL; DENSE FINE SAND; LAMINATED ROCK; SLATE; SCHIST; SANDSTONE				26000	34000	36000
3	SHALE; BROKEN BED ROCK; HARDPAN; COMPACT CLAY-GRAVEL MIXTURES			26500	22000*	34000	36000
4	GRAVEL, COMPACT GRAVEL AND SAND CLAYPAN			22000	18000	29000	33000
5	MEDIUM-FIRM CLAY; LOOSE SAND AND GRAVEL: COMPACT COARSE SAND			18500	14000	24000	28000
6	SOFT-PLASTIC CLAY; LOOSE COARSE SAND; CLAY SILT; COMPACT FINE SAND			15000	10000	19000	23000
7	FILL: LOOSE FINE SAND; WET CLAYS; SILT			10000	6000	14000	20000

* AUGER HUB

RECOMMENDED GUY TO ANCHOR SELECTION

1 - 5/6" GUY STRAND PER EXPANDING OR SCREW ANCHOR 1 - 5/16" GUY STRAND PER HIGH TORQUE SCREW ANCHOR 2 to 3 - 5/16" GUY STRANDS PER PLATE OR ROCK ANCHOR 2 to 3 - 5/16" GUY STRANDS PER DOUBLE HELIX ANCHOR 1 - 1/2" GUY STRAND PER PLATE OR ROCK ANCHOR 1 - 1/2" GUY STRAND PER DOUBLE HELIX ANCHOR

(Additional gay strands may be connected only if actual guy tensions are determined, and soil class and anchor rod strength permits).

RATED BREAKING STRENGTH IN TENSION (LB) (STRENGTH FACTORS INCLUDED)

POLE LINE BOLTS 72" 7800 56" 12400 34" 18350 76" 25400	ANCHOR RODS 56" 18000 34" 23000 1" 38000 1-1/2" 70000
GUY STRAND 516" EHS 10080 1/2" EHS 24/210	POLE EYE PLATE OR HOOK USING 58" BOLT 12000

ANCHORS SHALL HAVE A 5"MINIMUM SPACING.

NESC STRENGTH FACTORS FOR GRADE B CONSTRUCT	ION .
SUPPORT HARDWARE	1.0
GUY ANCHOR AND FOUNDATION	1,0
GUY WIRE	0.9

GUY WIRE/GRIP

		GUY WIRE		GUY WIRE	MAX WORKING	PREFORM GRIP	PREFORM GRIP	
ı	SIZE	CU NAME	GUY WIRE ITEM ID	GRADE	LOAD	CU NAME	ITEM ID	
	3/8"	WRGYGS3/8IN	0208700	HIGH STRENGTH	5,890 LBS	GRGYGS3/8IN	0194200	
ı	3/8	WRGYGS3/8IN-EHS 8005103		EHS 8,310 LBS		GRG1G55/8IN	0194200	
	7/16"	WRGYGS7/16IN	7899629	EHS	11,345 LBS	GRGYGS7/16IN	0194300	
	1/2"	WRGYGS1/2IN	7563804	EHS	14,600 LBS	GRGYGS1/2IN	7563681	

NOTES:

3/8" HIGH STRENGTH GUY WIRE (WRGYGS3/8IN) REPLACED BY 3/8" EHS GUY WIRE (WRGYGS3/8IN-EHS), DO NOT BUILD WITH HIGH STRENGTH GUY WIRE, FOR REFERENCE ONLY.

ANCHOR WORKING STRENGTH

(LBS)

ANCHOR	ANCHOR	SOIL CLASS				ANCHOR RODS				
ANCHOR	ANCHOR CU NAME	ITEM ID	3	4	5	6	7	CU NAME	ITEM ID	ROD SIZE
6" SCREW ANCHOR	ANCSCR61N	7560186			3,930	3,030	1,510	N/A	N/A	
8" EXPAND	ANCTWHX8-WAYASP/ST8IN	0165400	13,900	13,300	10,900	9,000	6,000	RDANC3/4IN8FT	0224100	3/4" X 8'
11 5/16" HELIX	ANCSGHX11IN	0164800	15,100	12,700	10,300	7,900	5,400	RDANCNT1IN7FT	0224400	1" X 7'
15" HELIX	ANCSGHX15IN	0164900	18,100	15,700	13,900	10,900	8,400	RDANCNT1IN7FT	0224400	1" X 7'
2-8" HELIX	ANCTWHX8IN	0164700	20,000	16,300	13,000	9,600	6,000	RDANCNT1IN7FT	0224400	1" X 7'
ROCK EXPANDING	ANCRCK1-3/4IN3/4IN53IN	0165701	WHEN SET 12" DEEP IN SOLID N/A N/A					N/A	3/4" X 53"	
ROCK EXPANDING	ANCRCK1-3/4IN3/4IN72IN	7560184	ROCK							3/4" X 53"

- CLASS 3 SHALE; BROKEN BEDROCK; HARDPAN; COMPACT CLAY-GRAVEL MIXTURES, PROBE VALUE - 500 TO 600 IN.-LBS.
- CLASS 4 GRAVEL; COMPACT GRAVEL AND SAND; CLAYPAN, PROBE VALUE 400 TO 500 IN LBS.
- CLASS 5 MEDIUM-FIRM CLAY; LOOSE SAND AND GRAVEL; COMPACT COARSE SAND, PROBE VALUE 300 TO 400 IN J.BS.
- CLASS 6 SOFT-PLASTIC CLAY; LOOSE COARSE SAND; CLAYEY SILT; COMPACT FINE SAND, PROBE VALUE - 200 TO 300 IN LBS.
- CLASS 7 FILL; LOOSE FINE SAND; WET CLAYS; SILT, PROBE VALUE 100 TO 200 IN LBS.

NOTES:

- 1 SWAMP, MARSH, SATURATED SILT OR HUMUS REQUIRE SPECIAL ANCHORS.
- 2 ALL CONSTRUCTION IS DESIGNED TO MEET GRADE C.

DENOTES LATEST REVISION

NOTE; UNLESS SPECIFIED									
٨	8	12/12/16	MCG	НМ	RO	WESTAR ENERGY, INC.	GUYS AND ANCHORS WORKING STRENGTH		
NV fort our Essayer		9/22/17	CM	SO	RO	ALL RIGHTS RESERVED			
Westar Energy.	NO.	DATE	BY	CK	APP 29	SHEET 1 OF 1	LCS 5 -020	REV 9	

Conductor Data

KCPL Conductor Data

						1/2" ice, 4 p							
Span (ft)	266 ACSR 18/1	477 AA	3/0 ACSR	2 ACSR	3/0 AA	397 ACSR	T-2 4/0	4ACSR	1/0 ACSR	2/0 ACSR	4/0 ACSR	336.4 ACSR	477 ACSR
10	1725	2098	1659	738	803	4197	4179	493	1108	1332	2091	3658	5015
15	1734	2109	1665	744	821	4201	4184	499	1113	1338	2096	3661	5019
20	1743	2123	1672	751	841	4206	4191	508	1119	1346	2103	3666	5024
25	1755	2140	1681	761	863	4212	4200	518	1127	1356	2111	3672	5031
30	1771	2160	1704	771	887	4202	4211	529	1136	1367	2121	3679	5039
35	1787	2184	1704	783	911	4230	4223	542	1150	1381	2133	3687	5049
40	1806	2209	1718	796	936	4240	4238	555	1164	1395	2146	3697	5060
45	1826	2237	1734	810	961	4252	4254	572	1180	1411	2160	3708	5073
50	1848	2266	1750	828	986	4265	4271	589	1197	1428	2176	3719	5086
55	1871	2297	1768	846	1011	4279	4290	607	1215	1447	2193	3732	5101
60	1894	2329	1786	864	1036	4294	4311	624	1234	1465	2211	3746	5117
65	1919	2362	1806	883	1061	4310	4330	642	1253	1485	2230	3760	5135
70	1944	2396	1826	902	1086	4328	4357	659	1272	1505	2249	3776	5153
75	1971	2431	1847	921	1110	4346	4381	677	1292	1526	2270	3792	5172
80	1997	2465	1868	940	1134	4364	4406	694	1313	1547	2291	3809	5192
85	2024	2501	1890	959	1158	4384	4432	711	1333	1568	2313	3827	5213
90	2051	2536	1912	978	1181	4405	4459	728	1354	1590	2335	3846	5235
95	2079	2572	1934	998	1205	4426	4487	745	1374	1612	2357	3865	5257
100	2107	2608	1957	1016	1227	4447	4515	760	1395	1634	2380	3885	5280
105	2134	2644	1980	1035	1250	4470	4545	772	1416	1656	2404	3905	5304
110	2162	2699	2003	1054	1270	4492	4575	785	1437	1678	2428	3926	5328
115	2190	2752	2026	1073	1289	4516	4606	797	1458	1700	2451	3947	5353
120	2218	2803	2050	1091	1308	4540	4637	810	1479	1723	2476	3969	5379
125	2246	2853	2073	1110	1328	4564	4669	822	1499	1745	2500	3991	5405
130	2274	2902	2097	1128	1346	4588	4701	834	1520	1767	2524	4013	5431
135	2302	2949	2120	1146	1365	4613	4734	846	1541	1789	2549	4013	5457
140	2330	2995	2144	1165	1384	4638	4767	858	1561	1812	2574	4059	5484
145	2358	3041	2167	1180	1402	4664	4800	870	1582	1834	2599	4082	5512
150	2386	3085	2191	1194	1420	4689	4834	881	1603	1856	2623	4105	5539
155	2413	3118	2214	1208	1438	4715	4867	893	1623	1878	2648	4129	5567
160	2441	3145	2238	1221	1456	4742	4901	904	1643	1900	2673	4153	5595
165	2468	3172	2261	1235	1474	4768	4935	916	1664	1922	2698	4177	5623
170	2495	3199	2285	1248	1491	4794	4970	927	1684	1944	2723	4201	5652
175	2522	3225	2308	1262	1509	4821	5004	920	1704	1966	2748	4225	5680
180	2549	3252	2331	1275	1520	4847	5039	930	1724	1987	2772	4250	5709
185	2576	3278	2355	1288	1520	4874	5073	930	1743	2009	2797	4274	5738
190	2603	3304	2378	1302	1520	4901	5108	930	1759	2030	2822	4299	5767
195	2629	3331	2401	1315	1520	4928	5143	930	1774	2051	2847	4324	5796
200	2655	3357	2424	1328	1520	4955	5177	930	1789	2073	2871	4348	5825
205	2682	3383	2446	1340	1520	4982	5212	930	1803	2094	2896	4373	5854
210	2708			1353	1520	5009	5247	930		2115	2920	4378	5883
		3409	2469						1818				
215	2734	3435	2492	1366	1520	5036	5282	930	1837	2136	2945	4422	5913
220	2759	3460	2514	1379	1520	5063	5317	930	1847	2154	2969	4447	5942
225	2785	3486	2537	1391	1520	5090	5351	930	1862	2170	2993	4472	5971
230	2810	3511	2559	1404	1520	5117	5386	930	1877	2186	3017	4497	6000
235	2835	3536	2581	1416	1520	5144	5421	930	1891	2202	3041	4522	6030
240	2861	3562	2604	1425	1520	5171	5455	930	1905	2217	3065	4546	6059
245	2882	3586	2626	1425	1520	5198	5490	930	1920	2233	3089	4571	6088
250	2902	3611	2648	1425	1520	5225	5524	930	1934	2249	3133	4596	6117
255	2921	3636	2669	1425	1520	5252	5559	930	1948	2265	3137	4620	6146
260	2941	3661	2691	1425	1520	5279	5593	930	1962	2280	3160	4645	6175
265	2960	3685	2709	1425	1520	5306	5627	930	1976	2296	3184	4669	6204
270	2980	3709	2726	1425	1520	5332	5661	930	1991	2311	3207	4694	6233
275	2999	3733	2743	1425	1520	5359	5695	930	2004	2327	3231	4718	6262
280	3018	3757	2759	1425	1520	5386	5729	930	2018	2342	3254	4743	6291
285	3037	3781	2776	1425	1520	5412	5763	930	2032	2357	3277	4767	6320
290	3056	3805	2793	1425	1520	5439	5797	930	2046	2373	3300	4791	6349
295	3075	3828	2809	1425	1520	5465	5830	930	2060	2388	3323	4815	6377
300	3093	3851	2826	1425	1520	5491	5864	930	2073	2403	3345	4839	6406
305	3112	3875	2842	1425	1520	5517	5897	930	2087	2418	3368	4863	6434
310	3130	3898	2859	1425	1520	5543	5930	930	2100	2433	3391	4887	6463
315	3149	3920	2875	1425	1520	5569	5964	930	2114	2448	3413	4911	6491
320	3167	3943	2891	1425	1520	5595	5997	930	2127	2463	3435	4935	6519
325	3185	3966	2908	1425	1520	5621	6030	930	2141	2478	3452	4958	6547
330	3205	3988	2924	1425	1520	5647	6062	930	2154	2492	3470	4982	6575
335	3222	4011	2940	1425	1520	5672	6095	930	2167	2507	3488	5006	6603
340	3240	4033	2956	1425	1520	5698	6127	930	2180	2522	3505	5029	6631
345	3257	4055	2972	1425	1520	5723	6160	930	2190	2536	3523	5052	6658
350	3275	4077	2988	1425	1520	5748	6192	930	2190	2551	3540	5075	6686
355	3293	4098	3004	1425	1520	5774	6224	930	2190	2565	3557	5099	6713
360	3310	4120	3020	1425	1520	5799	6256	930	2190	2579	3575	5122	6741
365	3328	4141	3035	1425	1520	5824	6288	930	2190	2594	3592	5145	6768
370	3345	4163	3051	1425	1520	5849	6320	930	2190	2608	3609	5167	6795
375	3363	4180	3067	1425	1520	5873	6351	930	2190	2622	3626	5190	6822
380	3380	4180	3082	1425	1520	5898	6383	930	2190	2636	3643	5213	6849
385	3397	4180	3098	1425	1520	5923	6414	930	2190	2650	3660	5235	6875
390	3414	4180		1425	1520			930	2190			5258	
			3113			5947	6445			2655	3677		6902
395	3431	4180	3129	1425	1520	5971	6477	930	2190	2655	3694	5280	6929
400	3440	4180	3144	1425	1520	5971	6477	930	2190	2655	3711	5302	6955

		Legacy KCP&	L Tensions at 1					n lb)	
Span (ft)	556 ACSR	#2 ACSR cov	#4 ACSR cov	1/0 AAC	4/0 AAC	336.4 AAC	3/0 AAC cov	1/0 AAC cov	477 AAC cov
10	5795	916	598	525	1009	1546	750	493	1966
15	5801	921	604	542	1028	1557	773	514	1979
20	5806	928	612	561	1050	1571	798	538	1966
25	5814	937	622	582	1073	1588	826	563	2018
30	5823	948	633	603	1097	1608	854	589	2044
35	5834	959	646	625	1123	1631	883	615	2072
40	5846	972	659	647	1149	1656	912	640	2103
45	5859	986	673	669	1176	1683	941	665	2136
50	5874	1001	687	692	1203	1711	970	690	2171
55	5890	1016	702	717	1230	1740	999	714	2206
60	5908	1032	718	741	1257	1770	1027	738	2243
65	5926	1048	736	765	1284	1800	1053	760	2283
70	5946	1065	755	789	1311	1831	1077	781	2326
75	5967	1081	773	809	1337	1863	1100	801	2372
80	5988	1098	791	827	1364	1894	1124	820	2418
85	6011	1117	809	844	1390	1926	1147	840	2464
90	6034		827	861	1416	1958	1169	859	2509
95		1138	845		1441	1990		877	
	6059	1158		878			1192		2553
100	6084	1178	863	895	1467	2022	1214	895	2596
105	6109	1198	881	911	1491	2054	1236	895	2639
110	6135	1219	898	927	1512	2085	1258	895	2682
115	6162	1239	916	943	1533	2117	1280	895	2723
120	6190	1259	933	959	1554	2157	1301	895	2764
125	6217	1279	947	975	1575	2196	1322	895	2805
130	6246	1299	960	990	1595	2235	1342	895	2845
135	6274	1318	973	995	1616	2272	1363	895	2884
140	6303	1338	986	995	1636	2308	1370	895	2923
145	6333	1357	999	995	1657	2344	1370	895	2961
150	6362	1377	1012	995	1677	2379	1370	895	2998
155	6392	1396	1025	995	1696	2408	1370	895	3035
160	6423	1415	1037	995	1716	2432	1370	895	3072
165	6453	1434	1050	995	1736	2455	1370	895	3101
170	6484	1453	1062	995	1755	2478	1370	895	3129
175	6514	1472	1074	995	1774	2501	1370	895	3157
180	6545	1487	1086	995	1793	2524	1370	895	3185
185	6577	1501	1098	995	1812	2547	1370	895	3213
190	6608	1516	1110	995	1831	2570	1370	895	3240
195	6639	1530	1120	995	1850	2592	1370	895	3268
200	6670	1544	1120	995	1868	2615	1370	895	3295
205	6702	1559	1120	995	1886	2637	1370	895	3322
210	6733	1573	1120	995	1904	2659	1370	895	3349
215	6765	1587	1120	995	1915	2681	1370	895	3375
220	6796	1601	1120	995	1915	2703	1370	895	3402
225	6828	1615	1120	995	1915	2725	1370	895	3428
230	6859	1629	1120	995	1915	2747	1370	895	3454
235	6891	1642	1120	995	1915	2768	1370	895	3480
240	6922	1656	1120	995	1915	2789	1370	895	3506
245	6954	1669	1120	995	1915	2811	1370	895	3531
250	6985	1683	1120	995	1915	2832	1370	895	3557
255	7017	1696	1120	995	1915	2853	1370	895	3582
260	7017	1710	1120	995	1915	2873	1370	895	3607
265 270	7079	1723	1120	995 995	1915	2894	1370 1370	895 895	3631 3656
	7111	1730	1120		1915	2915			
275	7142	1730	1120	995	1915	2935	1370	895	3680
280	7173	1730	1120	995	1915	2955	1370	895	3705
285	7204	1730	1120	995	1915	2975	1370	895	3729
290	7325	1730	1120	995	1915	2995	1370	895	3752
295	7266	1730	1120	995	1915	2995	1370	895	3776
300	7296	1730	1120	995	1915	2995	1370	895	3799
305	7327	1730	1120	995	1915	2995	1370	895	3823
310	7358	1730	1120	995	1915	2995	1370	895	3846
315	7388	1730	1120	995	1915	2995	1370	895	3869
320	7419	1730	1120	995	1915	2995	1370	895	3891
325	7449	1730	1120	995	1915	2995	1370	895	3910
330	7479	1730	1120	995	1915	2995	1370	895	3910
335	7509	1730	1120	995	1915	2995	1370	895	3910
340	7539	1730	1120	995	1915	2995	1370	895	3910
345	7569	1730	1120	995	1915	2995	1370	895	3910
350	7598	1730	1120	995	1915	2995	1370	895	3910
355	7628	1730	1120	995	1915	2995	1370	895	3910
360	7658	1730	1120	995	1915	2995	1370	895	3910
365	7687	1730	1120	995	1915	2995	1370	895	3910
370	7716	1730	1120	995	1915	2995	1370	895	3910
375	7745	1730	1120	995	1915	2995	1370	895	3910
380	7774	1730	1120	995	1915	2995	1370	895	3910
385	7803	1730	1120	995	1915	2995	1370	895	3910
390	7832	1730	1120	995	1915	2995	1370	895	3910
395	7860	1730	1120	995	31 1915	2995	1370	895	3910
400	7889	1730	1120	995	1915	2995	1370	895	3910
.00	. 555								20.0

0 (6)	1.15							itial (all tensio		0/0 0	1 000 1 0	
Span (ft)	4 Duplex	6 Duplex	1/0 Triplex	2/0 Triplex	3/0 Triplex	#2 Triplex	4 Triplex	336.4 Triplex	1/0 Quad	3/0 Quad	336.4 Quad	
10 15	496 507	325 337	1115 1127	1340 1354	1666 1679	744	498 510	1566 1598	1118	1818 1834	1699 1748	3474
20	520	351	1143	1372	1698	756 773	526	1639	1134 1154	1855	1807	3475 3477
25	535	367	1162	1393	1721	792	543	1686	1178	1880	1873	3479
30	552	389	1184	1418	1747	813	562	1796	1204	1908	1940	3482
35	570	408	1210	1446	1775	835	582	1903	1232	1939	2009	3486
40	592	428	1238	1475	1805	859	605	1999	1262	1971	2077	3490
45	614	448	1267	1506	1837	883	629	2068	1294	2005	2143	3494
50	636	468	1297	1538	1869	907	652	2107	1328	2040	2208	3499
55	658	486	1328	1571	1903	932	676	2147	1361	2075	2270	3505
60	680	500	1358	1604	1937	959	699	2187	1395	2110	2331	3511
65	702	514	1389	1638	1972	985	722	2227	1428	2146	2393	3517
70	724	529	1420	1671	2008	1012	744	2267	1462	2181	2456	3524
75	745	543	1451	1705	2044	1038	765	2307	1495	2217	2515	3532
80	764	556	1482	1738	2080	1064	782	2346	1527	2252	2572	3540
85	780	570	1512	1772	2166	1089	799	2385	1559	2287	2625	3548
90	795	583	1543	1805	2152	1115	816	2423	1591	2322	2676	3557
95	811	595	1573	1838	2187	1140	832	2461	1623	2356	2724	3566
100	826	595	1602	1870	2223	1164	848	2498	1654	2390	2770	3575
105	842	595	1632	1903	2258	1189	864	2534	1684	2424	2814	3585
110	857	595	1661	1975	2293	1208	880	2570	1714	2457	2855	3595
115	872	595	1690	1966	2327	1227	895	2605	1744	2489	2895	3606
120	886	595	1718	1998	2362	1246	910	2640	1773	2522	2933	3617
125	901	595	1746	2028	2396	1265	925	2674	1802	2553	2968	7628
130	915	595 505	1774	2059	2429	1283	930	2707	1730	2585	3002	3639
135	929	595	1799	2089	2462	1301	930	2739	1853	2616	3035	3651
140 145	930 930	595 595	1821 1842	2119 2149	2495 2527	1319 1337	930 930	2771 2803	1876 1898	2646 2676	3066 3095	3663 3676
150	930	595	1842	2178	252 <i>1</i> 2559	1354	930	2833	1920	2705	3124	3688
155	930	595	1885	2206	2599	1372	930	2863	1942	2734	3151	3701
160	930	595	1906	2234	2622	1372	930	2893	1942	2762	3176	3714
165	930	595	1927	2257	2653	1406	930	2921	1986	2789	3201	3728
170	930	595	1947	2280	2683	1423	930	2950	2007	2816	3224	3741
175	930	595	1968	2303	2713	1425	930	2977	2028	2843	3247	3755
180	930	595	1988	2326	2743	1425	930	3004	2049	2869	3268	3769
185	930	595	2008	2348	2772	1425	930	3031	2070	2895	3289	3783
190	930	595	2028	2370	2801	1425	930	3057	2090	2921	3308	3798
195	930	595	2048	2392	2830	1425	930	3075	2110	2947	3310	3812
200	930	595	2067	2414	2858	1425	930	3075	2130	2972	3310	3827
205	930	595	2086	2436	2884	1425	930	3075	2150	2998	3310	3842
210	930	595	2106	2457	2908	1425	930	3075	2169	3023	3310	3857
215	930	595	2125	2479	2932	1425	930	3075	2188	3048	3310	3872
220	930	595	2143	2500	2955	1425	930	3075	2190	3072	3310	3887
225	930	595	2162	2521	2978	1425	930	3075	2190	3096	3310	3903
230	930	595	2181	2541	3001	1425	930	3075	2190	3119	3310	3918
235	930	595	2190	2562	3024	1425	930	3075	2190	3142	3310	3934
240	930	595	2190	2582	3047	1425	930	3075	2190	3164	3310	3949
245	930	595	2190	2602	3069	1425	930	3075	2190	3186	3310	3965
250	930	595	2190	2622	3092	1425	930	3075	2190	3208	3310	3981
255	930	595	2190	2642	3114	1425	930	3075	2190	3229	3310	3997
260 265	930 930	595 595	2190 2190	2655 2655	3136 3157	1425 1425	930 930	3075 3075	2190 2190	3250 3271	3310 3310	4013 4029
270	930	595	2190	2655	3179	1425	930	3075	2190	3271	3310	4029
275	930	595	2190	2655	3200	1425	930	3075	2190	3311	3310	4062
280	930	595	2190	2655	3221	1425	930	3075	2190	3331	3310	4002
285	930	595	2190	2655	3242	1425	930	3075	2190	3351	3310	4078
290	930	595	2190	2655	3263	1425	930	3075	2190	3370	3310	4111
295	930	595	2190	2655	3283	1425	930	3075	2190	3389	3310	4127
300	930	595	2190	2655	3304	1425	930	3075	2190	3395	3310	4144
305	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4160
310	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4177
315	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4193
320	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4210
325	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4227
330	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4243
335	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4260
340	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4277
345	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4293
350	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4310
355	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4327
360	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4344
365	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4360
370	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4377
375	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4394
380	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4411
385	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4427
390	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4444
395 400	930	595 505	2190	2655	3310	3<u>4</u>2 25	930	3075 3075	2190	3395	3310	4461
400	930	595	2190	2655	3310	1425	930	3075	2190	3395	3310	4478

		acy KCP&				•		_	_ `			
Span (ft)	3/8 EHS	6A Cwld	1/0 Cu	2/0 Cu	3/0 Cu	4/0 Cu	#4 Cu	6Cu	10 Cwld	250 Cu	500 Cu	795 AAC
10	3851	651	1194	1488	1845	2295	494	331	1042	2885	5480	3481
15	3852	657	1201	1495	1852	2302	505	344	1044	2860	5485	3487
20	3853	665	1212	1505	1862	2311	519	359	1048	2868	5494	3496
25	3855	675	1224	1517	1873	2322	535	375	1052	2878	5504	3509
30	3857	686	1239	1531	1887	2336	553	392	1057	2891	5516	3521
35	3860	698	1256	1548	1903	2352	572	410	1063	2905	5531	3537
40 45	3867	712	1274 1294	1565	1921 1940	2369 2388	591 610	428 446	1070 1077	2920 2938	5547	3555
50	3866 3870	726 740	1314	1585 1605	1940	2409	630	463	1077	2957	5565 5585	3576 3597
55	3874	756	1335	1626	1982	2409	650	481	1085	2977	5607	3621
60	3878	771	1357	1649	2004	2454	669	498	11034	2998	5630	3645
65	3883	787	1380	1672	2028	2478	689	515	1113	3021	5634	3672
70	3888	803	1403	1695	2052	2502	708	531	1123	3044	5680	3966
75	3894	819	1426	1719	2077	2528	727	544	1134	3069	5707	3728
80	3900	835	1449	1743	2102	2554	746	557	1144	3094	5735	3757
85	3906	851	1472	1768	2127	2581	765	570	1156	3120	5763	3787
90	3912	867	1496	1792	2153	2607	784	583	1167	3146	5794	3818
95	3919	884	1519	1817	2179	2635	802	595	1179	3173	5825	3849
100	3926	900	1543	1842	2205	2662	820	608	1191	3200	5856	3881
105	3934	916	1566	1866	2231	2690	838	620	1203	3227	5888	3913
110	3942	932	1589	1891	2257	2718	856	632	1215	3255	5920	3946
115	3950	948	1613	1916	2284	2745	874	640	1227	3283	5953	3979
120	3958	964	1636	1940	2310	2773	891	640	1240	3311	5987	4013
125	3967	979	1659	1965	2336	2801	908	640	1252	3339	6020	4046
130	3976	995	1681	1989	2362	2829	925	640	1265	3367	6054	4080
135	3985	1011	1704	2013	2388	2857	942	640	1278	3396	6088	4114
140	3994	1026	1727	2038	2414	2884	957	640	1291	3424	6122	4148
145 150	4004 4014	1041	1749	2061	2439	2912	970	640	1304	3452	6157	4182
150	4014	1057 1072	1771 1793	2085 2109	2465 2490	2939 2966	970 970	640 640	1317 1330	3480 3509	6191 6225	4215 4249
160	4024	1072	1814	2132	2515	2993	970	640	1343	3537	6260	4249
165	4035	1102	1836	2155	2540	3020	970	640	1356	3565	6294	4317
170	4043	1117	1857	2178	2565	3047	970	640	1369	3592	6328	4351
175	4067	1132	1879	2201	2590	3073	970	640	1382	3620	6362	4385
180	4078	1146	1899	2224	2614	3100	970	640	1395	3648	6396	4418
185	4090	1160	1920	2246	2638	3126	970	640	1408	3675	6430	4451
190	4101	1171	1941	2268	2662	3151	970	640	1421	3702	6464	4485
195	4113	1182	1961	2291	2686	3177	970	640	1434	3729	6497	4518
200	4125	1193	1981	2312	2709	3202	970	640	1447	3756	6531	4551
205	4137	1204	2001	2334	2733	3228	970	640	1460	3782	6564	4583
210	4150	1215	2021	2355	2756	3253	970	640	1473	3809	6597	4616
215	4162	1225	2041	2377	2779	3277	970	640	1485	3835	6629	4648
220	4175	1236	2060	2398	2801	3302	970	640	1498	3861	6662	4681
225	4187	1246	2080	2419	2824	3326	970	640	1511	3887	6694	4713
230	4200	1256	2099	2439	2846	3350	970	640	1524	3913	6726	4744
235	4213	1266	2118	2460	2868	3374	970	640	1537	3938	6757	4776
240	4226	1276	2136	2480	2890	3397	970	640	1550	3963	6789	4807
245	4240	1286	2155	2500	2912	3421	970	640	1562	3988	6820	4839
250	4253	1292	2173	2520	2933	3444	970	640	1575	4013	6850	4870
255	4266	1292	2191	2539	2954	3466	970	640	1588	4037	6881	4900
260	4280	1292	2209	2559	2975	3489	970	640	1600	4061	6911	4931
265	4294	1292	2227	2578	2996	3511	970	640	1613	4085	6941	4961
270 275	4308 4321	1292 1292	2245 2263	2597 2616	3017 3037	3534 3555	970 970	640 640	1625 1638	4109	6970 7000	4992 5022
275	4321	1292	2263	2635	3037	3555	970	640	1638	4133 4156	7000	5022
285	4349	1292	2297	2654	3077	3599	970	640	1663	4179	7029	5081
290	4364	1292	2314	2672	3097	3620	970	640	1675	4202	7037	5110
295	4378	1292	2331	2690	3116	3641	970	640	1687	4202	7114	5139
300	4392	1292	2348	2708	3136	3662	970	640	1700	4248	7141	5168
305	4406	1292	2365	2726	3155	3682	970	640	1712	4270	7169	5197
310	4421	1292	2375	2744	3174	3702	970	640	1724	4292	7196	5225
315	4435	1292	2375	2761	3193	3723	970	640	1736	4314	7223	5253
320	4450	1292	2375	2779	3211	3743	970	640	1749	4335	7249	5281
325	4464	1292	2375	2796	3230	3762	970	640	1761	4357	7276	5309
330	4479	1292	2375	2813	3248	3782	970	640	1773	4378	7320	5337
335	4494	1292	2375	2830	3266	3801	970	640	1783	4399	7327	5364
340	4508	1292	2375	2847	3284	3820	970	640	1792	4420	7352	5391
345	4523	1292	2375	2863	3302	3839	970	640	1801	4440	7378	5418
350	4538	1292	2375	2880	3319	3858	970	640	1810	4461	7402	5445
355	4553	1292	2375	2896	3336	3876	970	640	1819	4481	7427	5472
360	4568	1292	2375	2912	3354	3894	970	640	1828	4501	7451	5498
365	4583	1292	2375	2928	3371	3913	970	640	1837	4520	7475	5524
370	4598	1292	2375	2944	3387	3930	970	640	1846	4540	7498	5550
375	4613	1292	2375	2960	3404	3948	970	640	1855	4559	7522	5576
380	4628	1292	2375	2965	3421	3966	970	640	1864	4579	7545	5602
385	4643	1292	2375	2965	3437	3983	970	640	1872	4598	7567	5627
390	4658	1292	2375	2965	3452	3 ⁴⁰⁰⁰ 3 ¹ 017	970	640	1881	4616	7590	5652
395	4673	1292	2375	2965	3469		970	640	1890	4635	7612	5677
400	4688	1292	2375	2965	3485	4034	970	640	1899	4653	7634	5702

Westar Conductor Data

Year	Span (ft)	266 ACSR 26/7	477 ACSR 26/7	1/0 ACSR 6/1	2 ACSR 6/1
Prior to 1/22/16	275	3910	5500	1720	1550
	175	2400	3750	1365	1075
After 1/22/16	200	2600	4000	1480	1160
Aiter 1/22/10	250	3025	4700	1700	1335
	300	3400	5000	1920	1485

				336 ACSR	556 ACSR	T2-4/0 ACSR	T2-266 ACSR	T2-1/0 ACSR
Year	Span (ft)	2/0 ACSR 6/1	4/0 ACSR 6/1	26/7	18/1	6/1	26/7	26/7
Prior to 10/10/16	275	2138	3300	4700	5000	5547	5500	2500
	175	1575	2125	2850	4570	3650	4100	2180
After 10/10/16	200	1715	2330	3100	4750	3980	4500	2370
Alter 10/10/10	250	1950	2680	3600	5090	4560	5250	2730
	300	2210	3025	4000	5400	5140	5925	3070

		3/8" HS GSS
Year	Span (ft)	ACSR
Prior to 10/10/16	275	3250
	175	3084
10/10/16 to	200	3172
2/23/18	250	3355
	300	3539

			24-Strand
		3/8" EHS	OPGW (AC-
Year	Span (ft)	GSS ACSR	64/528)
	175	1860	2560
After 2/23/18	200	2030	2780
Aitei 2/23/10	250	2375	3250
	300	2685	3660

		Slack 266	Slack 477	Slack 1/0	Slack 2 ACSR
Year	Span (ft)	ACSR 26/7	ACSR 26/7	ACSR 6/1	6/1
Prior to 10/10/16	50	1000	-	500	500
1 1101 to 10/10/10	80	ı	500	-	-
	20	40	50	30	30
	30	90	125	65	60
	40	160	225	125	110
	50	250	325	185	165
After 10/10/16	60	350	450	275	250
	70	475	625	360	325
	80	600	800	425	400
	90	650	-	525	500
	100	800	-	600	575

	275 ft Span
	Tensions,
Copper & CW	Final
#6 solid HD	
bare copper	760
#4 solid HD	
bare copper	1180
#2 solid HD	
bare copper	1750
#1-3 strand	
HD bare	
copper	1950
1/0-7 strand	
HD bare	
copper	2325
4/0-7 strand	
HD bare	
copper	3650
3-#10 EHS	
CW	1700

	125 ft Span
	Tensions,
Secondaries	Final
#6 Duplex	
(Shepherd)	575
#4 Duplex	
(Terrier)	998
#4 Triplex	
(Periwinkle)	877
#2 Triplex	
(Conch)	1200
#2 Triplex	
(Cockle)	950
1/0 Triplex	
(Janthina)	1300
2/0 Triplex	
(Triton)	2034
4/0 Triplex	
(Cerapus)	2108
#2 Quadruplex	
(Palomino)	1200
1/0	
Quadruplex	
(Costena)	1200
2/0	
Quadruplex	
(Grullo)	2109
4/0	
Quadruplex	
(Appaloosa)	2600

Steel Reinforcing Data

Steel Reinforcing Bracing

The following is a brief explanation of the installation and analysis of steel reinforcing bracing on wood poles to increase an existing pole's strength.

Construction:

Osmose's bracing design is a vertically stacked two section C shaped truss banded to the pole. The lower section is either 10' or 11' in length driven into the ground leaving 4' of truss about the installation tables provided by Osmose. The total range of upper section length is from 17' to 30'. These lengths were designed to cover 35' to 65' poles. Bracing is designed for installation on the Line-Of-Lead (LOL) side of the pole (transverse face or face of the pole perpendicular to the conductor run) and 45 degrees off from the LOL, meaning there are up to six different locations the bracing may be installed. If the brace must be installed at 45 degrees from LOL, additional brace strength and stiffness is required as identified in the tables provided by Osmose.

It is acceptable to use steel reinforcing braces on poles that are readily accessible by bucket truck. The steel reinforcing braces shall be installed on the approaching side of the pole along a street, the opposite side of the pole of risers or communications cabinets. It is unacceptable to use steel reinforcing braces on poles that are not readily accessible by bucket truck. Poles that are not readily accessible by bucket truck have an extremely good chance of being climbed and the bracing would likely prohibit acceptable climbing space on these poles.

Strength and Pole Loading Analysis:

Osmose designs their steel braces to improve the reinforced section of the existing pole by 2 pole class levels below the "H" class series, e.g. change a Class 5 pole into a Class 3 pole, and likewise change a Class 3 pole into a Class 1 pole. Osmose has also stated that their steel brace design can reinforce Class 1 poles to Class H1 poles. To clarify, the steel reinforcing that is used to reinforce a Class 3 pole to a Class 1 pole can also be used to reinforce a Class 1 pole to a Class H1 pole.

It is apparent that the entire pole does not increase in strength. The pole's strength can be increased up to the point where the steel reinforcing bracing ends, leaving a considerable portion of the pole at the original pole class.

It follows that any pole loading analyses performed on a steel reinforced pole must include two analysis runs per loading scenario, one where the pole is modeled at its pre-reinforced class, and the other where the pole is modeled at its reinforced class. The pole will be considered failed if the loading within the section of the pole above the steel bracing exceeds the pre-reinforced strength of the pole or the loading within the reinforced section of the pole exceeds the reinforced strength of the pole. The pole will be considered acceptable if the loading within the section of the pole above the steel bracing is below the pre-reinforced strength of the pole and the loading within the reinforced section of the pole is below the reinforced strength of the pole. Note: It is imperative that all conductor and equipment loads are accurately modeled in all pole-loading analyses.

Attaching companies are responsible for collecting the necessary information for performing pole loading analyses on steel reinforced poles. The information necessary to collect includes:

- Pre-reinforce pole class
- Reinforced section pole class
- · Height of reinforcing steel above ground

Extended Tapered C-Truss Matching KCPL

	Shielded	l lookialdad	Chielded	l luchiolded
Original Length/Class	40/3	Unshielded 40/3	Shielded 40/5	Unshielded 40/5
Final Length/Class	40/1	40/1	40/1	40/1
Standard Installation:				
Top C-Truss size	T 8x17	T 8x17	T 880x20	T 880x30
Base C-Truss size	T 8x10	T 8x10	T 880x10	T 880x10
Install 45° outside L-O-L:				
Top C-Truss size	T 980x17	T 980x17	T 1080.375x20	T 1080.375x30
Base C-Truss size	T 980x10	T 980x10	T 1080.375x10	T 1080.375x10
	Shielded	Unshielded	Shielded	Unshielded
Original Length/Class	45/3	45/3	45/5	Orisiniciaca
Final Length/Class	45/1	45/1	45/1	
Standard Installation:	40/1	40/1	40/1	
Top C-Truss size	T 8x17	T 8x20	T 980x25	
Base C-Truss size	T 8x10	T 8x10	T 980x10	
Install 45° outside L-O-L:	1 0/10	1 0/10	1 000×10	
Top C-Truss size	T 980x17	T 980x20	T 1080.375x25	
Base C-Truss size	T 980x10	T 980x10	T 1080.375x10	
	Shielded	Unshielded	Shielded	Unshielded
Original Length/Class	50/3	50/3	55/3	55/3
	Double Circuit	Double Circuit	Double Circuit	Double Circuit
Final Length/Class	50/1	50/1	55/1	55/1
Standard Installation:				
Top C-Truss size	T 9x17	T 9x25	T 9x20	T 9x30
Base C-Truss size	T 9x10	T 9x10	T 9x10	T 9x10
Install 45° outside L-O-L:				
Top C-Truss size	T 1080x17	T 1080x25	T 1080x20	T 1080x30
Base C-Truss size	T 1080x10	T 1080x10	T 1080x10	T 1080x10
	Shielded	Unshielded	Shielded	Unshielded
Original Length/Class	60/3		65/3	
	Double Circuit		Double Circuit	
Final Length/Class	60/1		65/1	
Standard Installation:				
Top C-Truss size	T 9x25		T 9x30	
Base C-Truss size	T 9x11		T 9x11	
Install 45° outside L-O-L:				
Top C-Truss size	T 1080x25		T 1080x30	
Base C-Truss size	T 1080x11		T 1080x11	

Remedy Estimates

Inite for make ready and Transfer or Transfer or Adjust Adjust Install Install Pemove Pemove												
Units for make ready and construction	Transfer or Replace Accessible Price	Transfer or Replace Inaccessible Price	Adjust Accessible Price	Adjust Inaccessible Price	Install Accessible Price	Install Inaccessible Price	Remove Accessible Price	Remove Inaccessible Price				
Pole Only												
55' & Below												
60' & Above												
Stub Poles												
Pulling Stub Poles on Job Site												
Return Trip to Pull Stub Poles												
Straighten Pole in Dirt												
55' & Below	ļ											
60' & Above Straighten Pole in Rock												
55' & Below	 											
60' & Above												
Equipment & Conductors												
Single Phase Transformers												
Two Phase (Delta) Transformer Bank												
Three Phase Transformer Bank												
Capacitor Bank	†											
Regulators												
Crossarms (Single Phase)												
Crossarms (Three Phase)												
Vertical Insulators												
Switches (C-Mounted, Single Phase)												
Switches (C-Mounted, Three Phase)												
Switches (600 Amp, Three Phase)	 											
Lightning Arrestors												
Bolted Attachments w/in												
Communication Space												
Drop Attachments w/in												
Communication Space												
<u>Conductors</u>												
34.5 kV (energized)												
Three Phase												
Primary <34.5 kV	ļ											
Single Phase	ļ											
Two Phase (Delta) Three Phase												
Secondary/Service												
Single Phase	 											
Three Phase												
Relocation of URD Cable Riser												
Primary	 											
Single Phase	1											
Three Phase												
Secondary/Service												
Single Phase												
Three Phase												
Replace Cable Back to Transformer												
(Only Cable in Conduit)												
Primary	 											
Single Phase	 											
Three Phase	 											
Secondary/Service Single Phase	 											
Three Phase	 											
Miscellaneous	 											
Streetlight	†		<u> </u>									
Ground Wires	 											
Guy Wires	1											
Anchors	†											
Rock Excavation - Per Vertical Ft	1											
Cell Net												
Riser (Secondary Riser Pole)												
Hand Digging (Per Location)												

Appendix A-1: KCPL	Conductor Properti	es, Sag and Tension T	ables

440-1-3.tif

C	0	
č	Ķ	
7	_	
Ċ	ر	
Ξ	5	
	2	
3	ζ	
۶	ζ	
	,	
3	5	
Ξ	5	
Z	Z	
Ψ	₹	
=	₹	
Ξ	1	
<	ĺ	

HORIZONTAL LOADING 4 PSF WIND 1/2" ICE LBS/FT.**	0.439 0.482 0.488	0.501 0.573 0.709	0.594 0.598 0.619	0.642	
			.9792 1.344 1.251 1.500 1.500	1.652	1.695
BARE WEIGHT LBS/FT.	0.0912 0.1828 0.1572	0.2304 0.4620 0.582	.290 0.5460 0.4468 .814 0.6553	0.7652	.746
BREAKING STRENGTH POUNDS	2,850 5,310 3,040	6,620 14,100 16,700	6,880 16,300 8,360 11,800 19,500	22,600	13,900
O.D. INCHES	0.316 0.447 0.464	0.502 0.720 1.127	.609 0.783 0.793 .614	0.927	1.026
DESIGN LOADING AMPACITY*	184 276 331	315 529 690	435 587 639 630 659	726	878
CODE	Sparrow Quail Phlox	Pigeon Linnet Penguin	Waxwing Ibis Cosmos Pelican Hawk	Dove	Arbutus
DESCRIPTION	#2 ACSR 6/1 #2/0 ACSR 6/1 #3/0 AA 7 (REF. CNLY)	#3/0 ACSR 6/1 336.4 kCM ACSR 26/7 2-4/0 ACSR 6/1 (T-2)	266 KCM ACSR 18/1 397.5 KCM ACSR 26/7 477 KCM AA 19 STRAND 477 KCM ACSR 18/1 477 KCM ACSR 26/7	556.5 KCM ACSR 26/7	795 KCM AA 37 STRAND
STK. NO.	420-005 420-008 420-176	420-009	420-132 420-159 420-712 420-180	420–155	420-703

*Ampacities are from the Aluminum Association Tables for the condition as shown° and 75 C conductor temperature.
**No safety factors.

CONDUCTOR
INFORMATION CODE,
NAME, AMPACITY, AND
STRENGTH CHARACTERISTICS

DWG REV: 03/22/04

DWG: **440.1-3**

DISTRIBUTION
CONSTRUCTION
STANDARDS

PRIMARY CONDUCTORS &	ACCESSORIES
----------------------	-------------

440-1-4.tif

	AAC AND AC	SR CONDU	CTORS	COMPACT	AND COMPRE	SSED COND	UCTORS WEIGHT
SIZE	STRANDING	DIA.	WEIGHT	SIZE	STRANDS	COMPACT	COMPRESSED
#2	6/1	0.316	91.3	8	7	0.133	
#2/0	6/1	0.447	183.1	6	7	0.167	
#3/0	6/1	0.502	230.9	4	7	0.211	
#3/0	7	0.464	157.5	2	7	0.266	
2-4/0 (T-2) 6/1	0.922	582.2	1	19	0.299	0.321
266,000 cm 397,500 cm	18/1	.609 0.783	290.0 546.9	1/0	19	0.366	0.361
007,000 011	207.	0.700	0.10.0	2/0	19	0.376	0.405
477,000 cm	19	0.793	447.8	3/0	19	0.423	0.456
477,000 cm 795,000 cm		0.858 1.026	656.8 746.0	4/0	19	0.475	0.511
				250	37	0.520	0.557
				300	37	0.570	0.610
				350	37	0.616	0.659
SIZE			CODE	400	37	0.659	0.706
#2			sparrow	500	37 37	0.736	0.788
#2/0			quail	600	61	0.736	0.866
#3/0			pigeon	600	01	0.813	0.866
#3/0			phlox	750	61	0.908	0.970
2-4/0 (1	-2)	"T-	-2 penguin	800	61	0.938	1.000
266,000			waxwing	900	61	0.999	1.060
397,500			ibis	1000	61	1.060	1.116
477,000	cm		cosmos				
795,000	cm		arbutus				
477,000	cm		hawk				
2001007 110100	: ALL ALUMIN SR: ALUMINUN REINFO	CABLE S					

SOLID AND CONCENTRIC STRANDED CONDUCTORS

		SOLID				STRA	NDED		
		WEI	GHT	B STRA	ANDING	ANDING	WEI	GHT	
SIZE	DIAMETER	ALUM.	COPPER	WIRES	DIA.	WIRES	DIA.	ALUM.	COPPER
6 4 2	0.162 0.204 0.257	24.15 38.44 61.07	79.4 126.4 200.9	7 7 7	0.184 0.232 0.292	19 19 19	0.186 0.235 0.296	24.60 39.20 62.30	81.0 129.0 205.0
1/0 2/0 3/0	0.325 0.365 0.409	97.15 122.15 154.4	319.6 402.9 507.9	19 19 19	0.373 0.419 0.470	37 37 37	0.374 0.420 0.471	99.10 125.0 157.0	326.0 411.0 518.0
4/0 300 350	0.460	194.7	640.5	19 37 37	0.528 0.630 0.681	37 61 61	0.529 0.631 0.681	199.0 282.0 329.0	653.0 926.0 1081.0
500 600 750				37 61 61	0.813 0.893 0.998	61 91 91	0.815 0.893 0.999	469.0 563.0 704.0	1544.0 1853.0 2316.0
1000 1500 1750				61 91 127	1.152 1.412 1.526	91 127 169	1.153 1.413 1.527	939.0 1408.0 1643.0	3088.0 4631.0 5403.0

Diameters are in inches (outside) Weights are in pounds per 1000 feet CONDUCTOR
INFORMATION DIAMETERS,
STRANDING, AND WEIGHT

DWG REV: 01/22/08 DWG: 440.1-4

DISTRIBUTION CONSTRUCTION STANDARDS

PRIMARY CONDUCTORS & ACCESSORIES

Issued: 1/1/2008

General

440.1-4

													61	65	69	73	77	œ	82	88	92	92
													53	27	61	65	69	73	77	80	84	87
													45	49	53	27	61	65	69	73	76	80
													38	42	46	20	54	22	61	65	69	72
													32	35	39	42	46	20	54	28	61	65
	27	30	33	37	4	45	49	24	28	62			27	30	33	36	39	43	47	5	54	28
	25	28	31	35	39	43	47	5	22	09			22	22	27	30	33	37	40	44	47	51
	23	26	29	33	37	41	45	49	53	27			19	7	23	25	28	31	34	37	41	45
	22	24	27	31	34	38	42	46	20	54			16	17	19	21	23	26	28	32	35	39
	20	23	25	53	32	36	40	44	48	25			13	15	16	17	19	21	24	56	53	33
	19	21	24	27	30	34	38	42	45	46			12	12	13	15	16	20	20	22	24	27
MOS	17	19	22	22	28	32	36	39	43	47		O	10	Ξ	Ξ	12	13	15	16	9	20	23
COS	16	9	20	23	56	30	34	37	4	44		ARR	တ	10	10	Ξ	12	13	15	16	8	71
CODE: COSMOS	14	16	19	22	25	28	31	35	38	42		CODE: SPARROW	80	თ	თ	10	1	12	4	15	17	19
AAC (13	15	17	20	23	56	29	33	37	33			7	∞	o o	თ	10	Ξ	12	14	16	9
	12	14	16	20	21	24	27	31	34	37		ACSR	7	7	œ	œ	ō	9	F	13	14	16
477kCM	11	12	4	17	19	22	25	29	32	35		#5	9	7	7	œ	œ	თ	10	12	13	15
	10	1	13	15	8	20	24	27	30	33			9	9	9	7	7	∞	0	10	12	14
	6	10	12	14	16	19	22	25	28	30			2	S	ဖ	9	7	7	ω	თ	Ξ	12
	8	ō	0	12	4	17	20	23	25	28			4	S	വ	Ω	9	7	7	ω	6	Ξ
	7	œ	6	Ξ	13	16	18	71	24	26			4	4	4	2	Ŋ	9	9	7	6	10
	9	7	œ	10	12	14	17	19	22	24			ы	4	4	4	S	Ŋ	9	9	ω	6
	2	9	/	တ	Ξ	73	16	<u></u>	20	23			2	2	4	4	S	Ŋ	9	9	∞	6
	2	2	7	∞	10	12	14	17	19	21			3	3	2	2	4	4	4	വ	9	7
	4	2	9	7	თ	Ξ	13	16	8	19			2	7	7	2	3	2	4	വ	വ	7
	3	4	2	9	ω	10	12	4	16	9			2	7	7	7	3	3	3	4	2	9
	3	3	4	Ŋ	7	თ	Ε	12	14	16			2	7	7	7	7	7	3	2	4	വ
	2	3	2	4	9	7	0	Ξ	13	4				-	-	2	7	7	7	2	М	4
	0	20.	30.	.04	20.	.09	.02	.08	.06	100			10.	20.	30.	.04	.09	.09	.02	.08	.06	100
										-	1											

80. \$\frac{3}{5}\$ \frac{3}{5}\$ \frac{4}{5}\$ \frac{5}{5}\$ \frac{6}{6}\$ \frac{7}{5}\$ \frac{8}{5}\$ \frac{1}{5}\$ \frac{1}{6}\$ \frac{1}{5}\$ \frac{1}{6}\$ \frac{1}{5}\$ \frac{1}{5}\$ \frac{1}{6}\$ \frac{1}{6}\$ \frac{1}{5}\$ \frac{1}{6}\$												
3 4 5 5 6 6 7 8 9 10 12 13 14 15 16 18 22 26 35 37 44 51 58 65 73 33 45 51 58 65 73 78 69 76 78	92 92 92		22	24	25	27	29	31	34	37	40	43
## 5 5 6 6 6 7 8 9 10 12 13 14 15 16 18 22 26 32 37 44 51 58 65 7 1 4 5 6 7 7 9 9 10 11 12 13 14 16 17 18 20 24 29 35 41 47 54 61 69 65 7 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 12 13 14 15 16 18 19 20 21 23 27 33 39 45 51 58 65 72 2 2 3 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 18 19 20 21 23 24 25 25 25 25 27 23 24 25 2 5 2 5 2 5 2 5 2 5 2 5 2 5 5 6 7 8 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	84 87		21	22	24	56	27	30	32	35	38	41
## 5 5 6 6 6 7 8 9 10 12 13 14 15 16 18 22 26 32 37 44 51 58 65 6 7 9 9 10 11 12 14 16 17 18 20 24 29 35 41 47 54 61 61 61 7 18 20 24 29 35 41 47 54 61 61 61 7 18 20 24 29 35 41 47 54 61 61 61 61 61 61 61 61 61 61 61 61 61	73 76 80		20	7	23	24	26	28	30	33	36	39
## 5 5 6 6 6 7 7 8 9 10 12 13 14 15 16 18 22 26 32 37 44 51 54 54 54 54 54 54 54 54 54 54 54 54 54	65 69 72		19	20	21	23	24	27	29	31	34	37
#2/O ACSR CODE: QUAIL #3/O ACSR CODE: QUAIL #4/O ACSR CODE: QUAIL	58 61 65		18	19	20	71	23	25	27	30	32	35
## 5 5 6 6 7 7 8 9 10 12 13 14 15 16 18 22 26 32 37 4 5 5 6 8 8 9 10 11 12 14 15 16 18 19 21 23 27 33 94 45 1	54 58 58		16	19	19	20	22	23	26	28	30	33
3 4 5 6 6 7 8 9 10 12 13 14 15 16 18 22 26 32 3 4 5 6 8 8 9 10 11 12 14 16 17 18 20 24 29 35 1 2 5 6 7 7 14 16 17 18 20 24 29 35 39 1 2 2 3 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 18 19 10 11 12 13 14 15 16 18 19 10 11 12 13 14 15 16 18 19 10 11 12 13 14 15 16 17 18	5444		15	16	9	19	20	22	24	26	29	32
3 4 5 6 6 7 8 9 10 12 13 14 15 16 18 22 22 24 29 1 4 5 6 6 7 7 8 9 10 12 13 14 16 17 18 20 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 29 24 28 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 13 14 15 16 17 18 20 24 24 25 6 7 8 9 10 11 12 13 14 15 16 17 18 9 10	55 4 42 45		14	5	16	<u>~</u>	19	21	22	25	27	30
\$\frac{7}{3} \frac{7}{4} \frac{5}{5} \frac{6}{6} \frac{6}{7} \frac{7}{8} \frac{9}{9} \frac{10}{10} \frac{12}{12} \frac{13}{13} \frac{14}{14} \frac{15}{16} \frac{18}{18} \frac{22}{22} \frac{2}{3} \frac{7}{3} \frac{4}{4} \frac{5}{5} \frac{6}{6} \frac{6}{7} \frac{7}{8} \frac{9}{9} \frac{10}{10} \frac{12}{12} \frac{13}{14} \frac{16}{16} \frac{18}{18} \frac{19}{20} \frac{24}{22} \frac{2}{3} \frac{3}{3} \frac{4}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{7}{8} \frac{9}{9} \frac{9}{10} \frac{11}{11} \frac{12}{12} \frac{13}{14} \frac{16}{15} \frac{11}{12} \frac{13}{14} \frac{16}{15} \frac{11}{12} \frac{12}{13} \frac{14}{14} \frac{15}{15} \frac{17}{14} \frac{15}{16} \frac{18}{18} \frac{19}{19} \frac{21}{22} \frac{2}{23} \frac{2}{3} \frac{4}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{7}{8} \frac{9}{9} \frac{9}{10} \frac{11}{11} \frac{12}{12} \frac{13}{14} \frac{15}{15} \frac{14}{15} \frac{17}{15} \frac{14}{15} \frac{17}{15} \frac{14}{15} \frac{17}{15} \frac{14}{15} \frac{17}{15} \frac{18}{15} \frac{17}{15} \frac{12}{23} \frac{25}{25} \frac{15}{25} 15	3322		13	14	15	16	18	19	21	23	25	28
\$\frac{5}{3} \frac{7}{4} \frac{5}{5} \frac{6}{6} \frac{6}{7} \frac{7}{8} \frac{9}{9} \frac{10}{10} \frac{12}{12} \frac{13}{14} \frac{14}{16} \frac{15}{18} \frac{16}{18} \frac{18}{18} \frac{10}{20} \frac{11}{12} \frac{13}{14} \frac{16}{16} \frac{18}{18} \frac{10}{19} \frac{11}{12} \frac{11}{14} \frac{16}{16} \frac{18}{18} \frac{19}{19} \frac{11}{12} \frac{13}{14} \frac{14}{16} \frac{18}{18} \frac{19}{19} \frac{11}{12} \frac{12}{13} \frac{14}{14} \frac{15}{16} \frac{18}{18} \frac{19}{19} \frac{11}{12} \frac{13}{14} \frac{16}{16} \frac{18}{18} \frac{19}{19} \frac{11}{12} \frac{13}{14} \frac{16}{15} \frac{18}{18} \frac{19}{19} \frac{12}{12} \frac{13}{14} \frac{16}{15} \frac{18}{18} \frac{19}{19} \frac{21}{23} \frac{21}{23} \frac{13}{14} \frac{15}{15} \frac{14}{16} \frac{16}{18} \frac{18}{19} \frac{21}{23} \frac{21}{23} \frac{23}{23} \frac{14}{16} \frac{16}{18} \frac{18}{19} \frac{21}{12} \frac{13}{23} \frac{14}{16} \frac{18}{16} \frac{18}{18} \frac{19}{12} \frac{21}{23} \frac{23}{23} \frac{14}{16} \frac{16}{18} \frac{18}{19} \frac{21}{23} \frac{23}{23} \frac{14}{16} \frac{16}{18} \frac{18}{19} \frac{21}{23} \frac{23}{23} \frac{14}{16} \frac{16}{18} \frac{18}{19} \frac{21}{23} \frac{23}{23} \frac{14}{16} \frac{18}{16} \frac{18}{16} \frac{18}{12} \frac{12}{23} \frac{23}{23} \frac{14}{16} \frac{18}{16} \frac{18}{16} \frac{18}{19} \frac{21}{23} \frac{23}{23} \frac{14}{16} \frac{16}{18} \frac{18}{16} \frac{18}{16} \frac{18}{16} \frac{18}{16} \frac{18}{12} \frac{23}{23} \frac{14}{16} \frac{18}{16} \frac{18}{16} \frac{18}{16} \frac{18}{16} \frac{18}{16} \frac{18}{16} \frac{18}{12} \frac{12}{23} \frac{14}{16} \frac{18}{16} \frac{18}{16} \frac{18}{16} \frac{11}{16} \frac{18}{16} \frac{18}{16} \frac{11}{16} \	33 28		12	13	14	15	16	9	20	21	24	26
3 3 4 5 5 6 6 7 8 9 10 12 13 14 15 16 18 19 21 14 15 16 18 19 21 18 19 21 18 19 21 18 19 21 18 19 21 18 19 21 18 19 21 18 19 21 18 19 21 22 23 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 11 12 13 14 13 14 15 16 11 12 13 14 15 16 18 19 10 11 12 13 14 15 16 18 19 11 11 11 11 11 12 13 14 15 16 18<	242		Ħ	12	13	4	15	17	00	20	22	25
2 3 4 5 5 6 6 7 8 9 10 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 18 19 10 11 12 14 15 16 18 19 10 11 12 14 15 16 18 19 10 11 12 12 2 3 3 4 4 5 6 6 7 7 8 9 9 10 11 2 2 3 3 4 4 5 6 6 7 7 8 8 9 10 11 2 13 14 15 16 18 19 10 11 12 13 14 15 16 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 20	23 23 23		Ξ	Ξ	12	13	14	15	17	19	21	23
2 3 4 5 5 6 6 7 8 9 10 12 13 14 16 18 18 19 10 12 13 14 16 18 11 12 12 13 14 16 18 18 19 10 11 12 13 14 16 18 18 19 10 11 12 13 14 16 18 18 19 10 11 12 12 2 3 3 4 4 5 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 18	2188	SUA:	10	10	Ξ	12	13	14	15	17	19	21
2 3 4 5 5 6 6 7 8 9 10 12 13 14 16 18 18 19 10 12 13 14 16 18 11 12 12 13 14 16 18 18 19 10 11 12 13 14 16 18 18 19 10 11 12 13 14 16 18 18 19 10 11 12 12 2 3 3 4 4 5 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 18 10 11 12 13 14 15 16 17 18	112	CODE	6	o	10	Ξ	12	13	4	16	8	20
2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 18 18 19 10 11 12 13 14 15 16 18 18 19 10 11 12 13 14 15 16 18 18 19 10 11 12 13 14 15 16 18 18 19 10 11 12 13 14 15 16 18 18 19 10 11 12 13 14 15 16 17 18 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17	4 9 9 9		∞	Ø	Ø	10	Ξ	12	13	15	16	18
2 3 4 5 5 6 6 7 8 9 10 11 12 12 12 12 12 12 12 13 14 15 15 6 6 7 8 9 10 11 12 14 15 14 15 16 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	12 4 9		7	∞	ග	თ	0	1	12	14	15	17
3 3 4 5 5 6 6 7 8 9 4 5 5 6 6 6 7 8 9 10 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 13 14 <td< td=""><td>5775</td><td>#5,</td><td>_</td><td>7</td><td>∞</td><td>თ</td><td>თ</td><td>0</td><td>Ξ</td><td>13</td><td>14</td><td>16</td></td<>	5775	#5,	_	7	∞	თ	თ	0	Ξ	13	14	16
2 3 3 4 5 5 6 6 7 7 8 8 9 10 11 12 13 13 14 15 15 16 16 17 18 18 18 19 10 11 11 12 13 13 14 15 15 16 16 16 17 18 18 18 19 10 11 11 12 13 13 14 15 15 16 16 16 17 18 18 18 19 10 11 12 13 13 13 14 15 15 16 16 16 16 17 18 18 18 10 11 11 12 13 13 13 14 15 15 16 16 16 16 17 18 18 19 10 11 11 12 13 13 13 14 15 15 16 16 16 17 18 18 19 10 11 11 12 13 13 13 13 14 15 15 16 16 16 17 18 18 19 10 11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	,624		9	7	7	∞	œ	6	10	12	13	15
3.3 4	0 6 1 7 7 7		စ	ဖ	9	7	ω	თ	0	Ξ	12	14
4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 3 3 3 3 2 2 2 3	×92=		2	വ	9	9	7	∞	0	0	Ξ	13
- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	0 6 0 0		4	വ	2	9	9	7	00	6	10	12
	ာထထတ		4	4	2	2	9	9	7	00	6	Ξ
100° 3 3 3 4 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7) ပထ တ		3	4	4	4	2	S	9	/	80	10
100° 3 3 3 4 5 5 5 10° 3 20° 2 2 2 3 3 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-292		3	2	3	4	4	Ω	S	ဖ	7	თ
100° 3 3 3 4 5 5 6 6 7 1 10° 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-22		3	3	3	3	4	4	2	വ	9	œ
100. 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 4 C O		2	7	7	3	2	2	4	2	9	7
200. 1 100. 2 200. 2 200. 2 200. 2 200. 3 300. 3 400. 3 100. 3 100. 3	ν 4 τυ		2	7	7	7	2	3	2	4	Ŋ	9
100. 100. 100. 100. 100.	1ww4		-	-	7	7	7	7	2	2	4	2
	90.		10.	50.	30.	.04	20.	.09	.07	.08	.06	100

INITIAL SAG. in inches, FOR BARE OVERHEAD CONDUCTORS

INITIAL SAG TABLES 1 OF 3

DWG: 440.1-5

	_				-0.10	_										
350		23 24 26 27	222	424			24888841	64 43 7	88 88	2322228	4 4 4 1 4 8 8 1		23 28 23	35 52	40	
340		21 23 24 26	28 30 8	35 25 25 25 25 25			22 42 82 83 83 83 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	0 8 4 0 8 2		24 28 33 33 33 34 35 36 37	39 442 46		22 23 26 28	3336	39	
330		20 21 23 24	28 28	4334			22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	37		222 223 234 234 234 234 234 234 234 234	37 44 44		22 23 25 27	2 × ×	37	
320		19 20 21 23	272	3323			222 223 229 23	33.55		222 222 22 22 22 22 22 22 22 22 22 22 2	35 4 4 5 3 3 5 1		19 22 24 25	30	382	
310		18 19 20 22	23	28 88 33 88 88			8 t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	322		25 22 23 38 28 38 38 38 38 38 38 38 38 38 38 38 38 38	37 40 40		27 27 3	988	33	
300		71 18 19 20	222	34 34 34			17 18 19 22 22 26	34 33		18 13 27 27 28	32 32 32		7 8 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	74 26 29	32	
290		16 17 18 19	22 23	23 32 35			57 B B 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33		7 52 23 25 25 25 25 25 25 25 25 25 25 25 25 25	33331		9 2 2 3 2 3 3 4 4 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	255	33	
280		15 T T 50 T 50 T T 50	37.3	32,22		8	597283	3.28		222232323232323233333333333333333333333	3233		21 21 21 21 21 21 21	25.27	383	
270		13 15 17	1 0	23 28 28			14 15 17 18 22 22 22	78 78 78		15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	33		4 C C C C C C C C C C C C C C C C C C C	27.2	27	CTOR
260	8	13 14 15	1,000	27 27 27 27 27 27 27 27 27 27 27 27 27 2			12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	252		15 15 17 19 23	31 28 31		51 4 51 51 51	13 23 23	25	CONDUCTOR
250		27 27 27 4	5	23 25		3	222459865	23		25 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27 30 30		212451	5 t Z	23	100
240	Z S	11 12 13	τ το α	13 24 24		BIS	= 2 T T T T T T T T T T T T T T T T T T	22 24	THUR H		25 28 28	2 4 5	£ = 222 ± 53	2 2 2 5	22 24	OVERHEAD
230	PIGE	D = 21	<u>4</u> τυ τ	23 23 23		CODE: 1	5=55450	23	6. Pg 6.	- 2M45K6	21 24 26	- - -	9 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	5.¢ €	23	
feet 220	ODE	9 10 11 21	<u>ნ</u> 4 ნ	2722			0011211111	73	1 <u> </u>	5=5548	22 22 22			4 5 C	27	BARE
, in , 210 .	SR	9 9 11	25.4	19 19 19		ACSR	00011224	18 20			23	0	2 6 0 0 0 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 4 5	18	FOR
SPAN 200	0 AC	88 90 10	T 27 t	5575		SKCM	∞∞∞5±55;	<u>.</u> 6 €	ACCR		13	100	x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 15 15	9 2	HE S.
190	#3/	7 88 88	5=5	4 5 6		397.	r∞∞e512;	55,	4/6		16 20 20	į	/ ₄ / ωωσς:	= 27 =	55 (1 JNCHE
180		9//0	თ ე է	5 4 5			で ト ト の q ひ ひ け げ	745	10	 	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		@ r r \ \ \ \ \	5 = 5	14 9	C,
170		7 7 6 6	ගෙග⊆	5 = 5 E			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 27 +		9rr80₽=	1111		00 N N 00 N	» € ±	17	L SAG,
160		5 6 7	r 00 0	v 5 5 4		88	va@~~@Q;	5 E É		997788	127		9999	» ση Ξ	= E	INITIAL
150		יט וט וט מ	10 1~ 0	o⊕			 	» 5 5		10 10 10 10 10 10 10 10 10 10 10 10 10 1	254		10101010101	× no or	52	_=
140		4400	991	- m = 2			4400000	0 00 0		4 N N O O N O	o = ₽		440000	o / o	o ⊕ €	
130		N 4 4 N	ഥയയ	o o o o o o o		8	W444NV01	, 00 0		4440000	∞2 <u></u> =		W 4 4 4 W I	0 0 7	ഫെത	
120		W W 4 4	4 N Q	2100			WWW44 WW.	0 1 0		WW44WW@	ر 10 و		WWW441	ചവവ	× /~ ∞	
110		и и и и	441	00/00			wwwww44r	700		NNN44WW	1910		0 m m m m .	4 4 ቢ	9 _	
100		3322	W 4 4	7697		3	aaannn4	4 C O		0000044	8997		22222	এব ব	0 21	
96	8	2222	א נא נא	n 4 € €			aaaaanni	U 4 V		0000mm4	457		00000	ე kJ 4	4 0	
80		- 222	M 67 K	J W 4 TO			000000	U 10 4		- 44444	1440		444	a ci w) NJ 4	
TEMP.		4 %°°°°	20. 100		1		200000000000000000000000000000000000000	500		0,0043000	.000		0.004 0.00	 20:0 20:0	90.	
Н				85	1	_		- 10	4		- 8				25	Ţ

INITIAL SAG TABLES 2 OF 3

DWG REV: 05/10/10 DWG: 440.1-6

DISTRIBUTION
CONSTRUCTION
STANDARDS

43

440-1-7.tif

350 340 330 320 310 300 1.72 2.08 2.08 2.3 2.3 2.3 3.18 3.18 4.22 4.22 290 1.61 1.95 1.95 2.16 2.7 2.7 3.01 3.03 4.02 280 1.5 1.65 1.82 2.03 2.27 2.27 2.85 3.17 3.5 3.5 3.5 3.5 3.5 3.5 270 260 1.29 1.58 1.58 1.77 1.99 2.24 2.53 3.15 3.47 250 1.2 1.32 1.64 1.64 1.85 2.1 2.37 2.67 3.29 3.29 240 1.11 1.22 1.36 1.72 1.72 1.96 2.23 2.82 3.12 3.12 230 1.03 1.13 1.126 1.62 1.85 2.39 2.39 2.98 210 210 SPAN, 200_2 190 0.72 0.8 0.9 1.13 1.38 1.86 2.12 2.38 180 0.65 0.73 0.82 0.94 1.27 1.27 1.73 1.73 2.23 170 0.59 0.65 0.74 0.85 0.99 1.17 1.61 1.61 2.09 160 0.52 0.59 0.66 0.77 0.9 1.07 1.27 1.72 1.72 1.95 150 0.46 0.59 0.69 0.81 0.97 1.16 1.37 1.82 140 0.41 0.46 0.52 0.61 0.72 0.87 1.26 1.26 1.47 130 0.36 0.54 0.054 0.054 0.057 0.057 0.057 0.057 0.057 0.057 120 0.31 0.34 0.47 0.56 0.69 0.85 1.04 1.23 110 0.26 0.34 0.49 0.49 0.76 0.94 1.12 0.22 0.25 0.23 0.34 0.67 0.67 0.67 1.01 100 0.18 0.24 0.28 0.35 0.35 0.58 0.58 0.74 0.9 90 1.68 2.28 2.28 2.28 3.48 4.44 6 6 7.68 11.16 80 20°. 20°. 50°. 50°. 50°.

	27	30	33	36	40	45	49	53	57	61
	25	28	31	34	38	42	46	5	22	29
	23	26	29	32	36	40	44	48	52	26
	22	24	27	30	34	38	42	46	20	54
	20	22	25	28	32	36	39	43	47	5
	19	21	23	56	30	33	37	4	45	8
	17	19	22	25	28	31	35	39	42	46
	16	18	20	23	26	29	33	36	40	43
AAC	15	16	19	21	24	27	31	34	38	4
796	13	15	17	19	22	25	29	32	36	39
	12	14	15	18	71	24	27	30	33	36
	11	12	14	16	13	22	25	28	31	34
	10	Ξ	13	15	18	20	23	27	30	33
	6	10	12	14	16	19	22	25	28	30
	œ	6	7	7	7	18	20	23	26	29
	7	∞	10	Ξ	14	16	19	21	24	27
	9	7	6	10	12	15	17	20	22	22
	9	9		6	Ξ		16		21	
	5	9	7	œ	10	12	4	17	19	21
	4	2	9	7	ტ	Ξ	13	15	17	19
	3	4	S	9	œ	10	12	14	16	130
	3	3	4	S	7	ω	10	12	14	16
		3								
	10.	20.	30.	40,	20°	.09	70.	80.	90	100

INITIAL SAG. in inches, FOR BARE OVERHEAD CONDUCTORS

INITIAL SAG TABLES 3 OF 3

DWG REV: 2/14/08 DWG: **440.1-7**

DISTRIBUTION CONSTRUCTION STANDARDS

PRIMARY CONDUCTORS & ACCESSORIES

Issued: 1/1/2008

... General

440.1-7

	350		259	251	244	237	231	225	220	215	210	206			2280	2068	1875	1705	1111
			-		247							207			2276	2061	1865	1691	07 1.7
	330		270	260	251	243	236	229	223	217	212	207							
	320		277	266	256	247	239	232	225	219	213	207				2047	1844	1663	101
	310		285		261										2266	2039	1833	1649	007
	300		295		267							209					1822		
	,290,300,310,320,330,340,		306		274							209					1810	1620	1117
	280				283										2256		1799	1604	04.4
	270		337		293						219	211					1788		
	230,240,250,260,270,280,										221	212		S	2249	2003	1776	1573	100
	250	¥ F OX			320									COSMOS	2246		1765	1558	1770
	240	CODE: PHLOX	420	375	339	310	286	267	251	237	225	214			2243 2246	1989	1753	1542	717
	230	COD			362									CODE:	2240	1982	1741	1525	1110
	220	AAC			392									AAC	2236	1974	1729	1509	740
feet	210	STRANDS A/		429									477kCM 19 STRANDS A	2233	1911	1717	1492	100	
SFAN, in	200			474										2230	1960	1706			
SFA	190	7	720		528							224		19	2227	1953	1694	1458	100
	180	#3/0	793	689	588	497	420	359	311	276	248	227		7kcM	2224	1947	1682	1441	0707
	170	"	805		596									47	2222	1940	1671	1424	000
	140 150 160 170 180		804	969	591	494	,14	344	294	257	229	208			2219		1659		
	150		803	694	587	487	401	333	283	245	218	197			2207	1918	1640	1382	0
	140		802	692	583	480	392	322	270	233	206	186			2155	1863	1582	1323	100
	130		802	689	578	474	382	310	258	221	194	175			2098	1804	1520	1259	100
	120		801	687	574	467	372	298	245	208	182	163			2036	1739	1381 1454	1191	0
	110		800	685	571	460	362	286	232	195	170	151			1969	1669	1381	1117	0
	90 ,100 ,110 ,120 ,130		795	629	562	449	348	270	216	180	156	139					1325		
	_		784	299	548	433	330	250	197	164	141	125			1898	1591	1293	1020	1
	80		772	654	534	416	310	230	178	147	126	111			1876	1566	1262	982	1
	⊢.		10	20.	30	.04	20.	.09	20.	80	.06	100			10.	20.	30.	40.	CL

000000000000000000000000000000000000000	1.5
2280 2068 1875 1705 1705 1429 1320 1127 1148	274 257 242 229 217 207 198 198 176
2276 2061 1865 1691 1540 1411 1301 11207 1127 1127	298 277 259 243 229 217 207 181
2273 2054 1854 1678 1524 1393 11281 1187 1105	328 303 280 280 261 244 229 217 206 196
2270 2047 1844 1663 1507 1374 1261 1166 1085	365 334 307 283 283 229 229 204 194
2266 2039 1833 1649 1490 1355 11240 1144 1063 994	2373 3373 3373 3310 2285 228 2228 203
2263 2032 1822 1634 1472 1335 11219 1122 1041 972	460 379 379 313 286 286 263 27 213
2259 2025 2025 1810 1620 1455 1198 1100 1018 949	515 469 425 384 315 287 287 225 225
2256 2018 1799 1604 1176 1176 1077 995	572 524 476 431 389 350 316 287 287 240
2253 2011 1788 1589 1418 1273 1153 1054 972 903	631 581 531 531 391 351 316 285 259
2249 2003 1776 1573 1399 1252 1130 1030 879	000 000 000 000 000 000 000 000 000 00
2246 1765 1765 1765 1776 1779 1779 1779 1779 1779 1779 1779	SPARROW 99 745 68 694 65 59 15 59 15 59 15 59 15 59 15 59 15 59 15 59 15 59 59 59 59 59 59 59 59 59 59 59 59 59
175 175 175 175 186 186 186 187 187 187 187 187 187 187 187 187 187	0404048504
2240 1982 1741 1525 1339 1184 1057 955 872 804	CODE: 806 756 704 652 652 652 653 745 745 745 745 745 745 745 745 745 745
236 974 974 972 978 978 978 978 978 978	306 755 755 704 755 755 755 755 755 755 755 755 755 75
2233 1967 1717 11492 1297 1136 1006 902 818 751	STRANDS 555 755 7 556 550 650 650 650 650 650 650 650 650
251777-0877	87795054488
1000400005511	8 6/1 805 755 702 649 649 595 540 430 378
2224 1947 1682 1682 11441 1232 1059 923 817 734 6668	ACSR 805 8 805 8 754 7 702 7 702 7 703 7 74 8 83 8 83 8 83 8 83 8 83 8 83 8 83 8 8
2222 1940 1671 1424 1209 1033 894 787 787 704 639	#2 805 754 702 648 648 537 481 425 320
2219 1933 1659 1407 1186 1005 864 756 673 610	805 754 701 6647 6647 5592 536 479 422 367 315
2207 1918 1640 1382 1156 972 829 721 640 577	805 754 701 646 646 534 477 420 364 311
2155 1863 1582 1323 1097 915 776 673 596 538	802 750 697 6643 6643 5587 530 414 414 357 303
2098 11804 11520 11259 11034 856 7722 624 6524 497	788 736 682 627 571 571 571 340 285
2036 1739 1454 11191 968 793 665 574 507 456	774 772 6668 612 612 497 4438 380 322 268
1969 11117 1117 1117 1117 1117 1117 1117	760 653 653 653 765 765 765 363 364 250
1920 1617 1325 1058 836 671 671 476 419 377	747 639 639 5583 5583 466 746 287 233
1898 1293 1020 792 625 511 381 381	735 626 626 569 551 390 330 270
1876 1266 1262 982 982 747 747 577 392 342 306	722 668 613 613 555 4497 375 375 198
100. 100. 100.	10° 20° 30° 30° 50° 70° 80°

	1506	1418	1330	1242	1155	1070	686	911	838	
			-	-						6 763
	•	_	•	1235 1238	_					
		_	107	1234 12	_	_				
	75	1327	00020	1231		20 10				
	1503	1413	1321	1229	1138	1048	096	9/8	797	724
			_	1228		•				
II.	•		_	1226	_			_		
S S		_	_		_	•				669
CODE:				1222		_				
	•	-	_	1220	_	_				
ING		-	_	6 1219	_					
RAND	_	_		8 1206						_
R STR	_			0 1188						
ACSK	- 10	10	700	3 1170	70	_	_	_		
#7/0		_	_	5 1153	_					
	_			8 1135						
	. =		_	0 1118	_	_		-		
	_	~	-	33 1100	-		200	-	2000	
	-	-		66 1083						
				49 1066						457 48
	_			1033 10						
				1017 10						
	53									387 4
	_									363
	ė.	_		.04						

FOR THE EQUIVALENT TABLE WITH INITIAL SAG IN INCHES, PLEASE REFER TO STANDARD DRAWING 440.1-5.

NEW BARE OVERHEAD CONDUCTOR INITIAL TENSION, in pounds

INITIAL TENSION TABLE 1 OF 3

DWG REV: 1/30/08 440.1-8

DISTRIBUTION CONSTRUCTION **STANDARDS**

PRIMARY CONDUCTORS & ACCESSORIES

Issued: 1/1/2008

SPAN, in feet SPAN, in fee	Q		9.29	99	17	39	35	34	00	O)	7		
80 90 100 110 120 130 140 150 150 150 160 150 160 150 150 150 150 150 150 150 150 150 15	0 350			110	200	10.80	-	-	-	***	_		
SPAN, in feet SPAN, in fee	-		20.0	23	100	-	30	0	_	1	_		
SPAN, in feet SPAN, in fee					-	-	-	_	,	-	s s		
SPAN, in feet SPAN,	-		1875 1767	1000 - 6		0.00			03070	1023	938		
SP No 110 120 130 140 150 160 170 180 180 200 210 220 240 250 260 270 280 290 290 200 210 210 220 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240 250 240	310		1874	1649	1536	1425	1315	1209	1108	1014	928		
SPAN Incomparison Feat SPAN Incomparison In	300		1874	1647	1534	-421	1310	1203	1101	1005	917		
SPAN Incet	290		1873 1760	1645	1531	1417	1306	1197	1093	966	200		
SPAN Incet	280		1873	1644	1528	1414	1301	1191	1086	786	897		
SPAN, in feet			1873	1642	1526	1410	1296	1185	1079	978	988		
SPAN, in feet SPAN, in fee		z	870	629	522	405	1290	1177	690	896	874		
80 90 100 110 120 130 140 150 160 160 170 180 190 200 210 220 230 240 180 180 180 180 180 180 180 180 180 18		1050	GIZ 1000		50.11	1187	- 32	207	100		_		
80 90 100 110 120 130 140 150 160 170 180 190 20 230 230 230 150 150 160 161 220 230 230 230 150 150 161 161 161 161 161 161 161 161 161 16		ш	1200122	98	50	93	88//	888	165				
SP No. 110 120 130 140 150 160 170 180 190 200 210 220 150 150 160 160 161 161 161 161 161 161 161 16		100			-								
80 90 100 110 120 130 140 150 160 170 180 180 200 210 100 110 120 180 180 180 180 180 180 180 180 180 18	20 2	1/9	90000000	1000	000	-00.11	10000	107	0.00		V22200		
80 90 100 110 120 130 140 150 160 170 180 180 200 150 160 1 10 120 130 140 150 160 170 180 180 180 180 180 180 180 180 180 18	feet 10_2	DING	20 22	75	20	99	- 555	3			_		
SO 90 100 110 120 130 140 150 160 160 170 180 180 181 160 161 161 161 161 161 161 161 161 16	.5 00 .2 .0	TRAN	30-16-	5.00	37	200	// L	- 12					
SO 9O 10O 11O 12O 13O 14O 15O 16O 17O 140 15O 16J	SPAN 90 2												
SO 9O 10O 11O 12O 13O 14O 15O 16O 17O 140 15O 16J	80 -) AC				- V V v v	ex 1553		15/100	0.50	5/2/6		
80 90 100 110 120 130 140 150 160 160 160 170 110 120 130 140 150 160 160 160 160 160 160 160 160 160 16	70 1	#3/(50-000	26 1		4.0		,					
80 90 100 110 120 130 140 150 1591 1604 1619 1633 1648 1663 1659 1650 135 1350 1365 1381 1397 1413 1430 1447 1059 1050 1365 1381 1397 1413 1430 1321 1207 1069 1085 1103 1150 1138 1157 1176 1198 1088 1089 1098				125	100								
80 90 100 110 120 130 140 1591 1504 1519 1533 1548 1663 1559 1355 1350 1355 1351 1397 1413 1430 1203 1218 1235 1258 1288 1383 1069 1085 1103 1120 1138 1157 1776 935 951 970 989 1008 1028 1048 738 818 838 859 880 901 922 559 564 589 614 689 429 456 483 510 536 562 588			6), 25,	25	330	99	25						
80 90 100 110 120 130 1591 1604 1619 1633 1648 1663 1335 1350 1365 1381 1387 1413 1203 1218 1235 1251 1268 1286 1069 1085 1103 1120 1288 157 933 951 970 989 1008 1028 798 818 838 859 880 901 656 687 709 732 755 778 539 564 589 614 539 664						-	-						
150 160 110 120 120 120 120 150 1646 1478 1493 1508 1524 1355 1365 1	4-			204 -						Robin	200000		
80 1591 1464 1335 1203 1069 933 798 665 539	7.13		A. A.	07	36	100	3						
80 1591 1464 1335 1203 1069 933 798 665 539	12(
80 1591 1464 1335 1203 1069 933 798 665 539	110		100										
80 1591 1464 1335 1203 1069 933 798 665 539	100												
	06												
T. 10' 20' 30' 70' 70' 70' 990' 100'	8					- 123	200	17/					
	H		0.00	30.	40	20.	.09	70.	.08	90,	100.		

00	ο.	~	ю	re.	٥.		***	10	_	0.
8	4387		3883	-9.50	0.876					2312
34	4370	4119	3868	_	-	3132		2679		2282
8	4357	4105	3852	3601	3353			2653	2444	2252
	4344	4091	3837	3583	3333	3088	2852	2626	2415	2220
	4331	4076	3820	3565	3313	3066	2827	2599	2385	2189
3	4318	4061	3804	3547	3293	3043	2801	2571	2355	2156
- 5	4304	4046	3787	3528	3272	3020	2776	2543	2324	2123
1	4289	4030	3770		3250		2750			
3	4275		3752				2723			
1B1S	4260	3998	3735	3470	3207	2948	9692	2455	2229	2021
ú							2669			
COD	4230		3698				2641			
26/7	4214 4		3679							
	4199 4	3931	3661	389	3117	848	585	332 2	094	875
STRANDING	1000		3642				2556 2			
S STI			3623							
ACSR	4150 4	878	3604	326	048	2771 2	499 2	235 2	987 2	758 1
SKCM	-	3861 3	3584 3	305 3	025 3	2745 2	470 2	2203 2	950 1	1718
397.5	4117 4		3565 3	284 3	001 3	719 2	441 2		71	36
2000	4100 4	3825 3	3545 3	3263 3		_	2411 2	-	1876 1	1636 1
33	4083 4	0 0		3242 3		-	-	2104 2	K85 1	87
8	4067 4	• '	3507 3		_		2353 2	-	_	552 1
88	051 4(_		2909 29			2038 2	1764 11	~
3	34 40	55 3	170 34	80 33	387 29	92 26	97 2.	200	726 17	99
83)19 4(738 35	152 34	161 31	366 28	68 25	22 69	74 20	11 689	.23 1466
8	0' 3975 3989 4003 4019 4034	722 37	34 34	42 3	44 28	44 25	42 22	43 19	53 16	1380 1423
38	'89 4C	706 37	18 34	24 31	25 28	22 25	17 22	14 19	17 16	38 13
85	75 39	91 37	02 34	97 31.	06 28	01 25	93 22	95 19	93 16	95 1338
8 8	J' 39	0, 36	0, 34(0, 31(0. 28/	0, 25	0. 21(0. 181	0, 151	100* 1295
	¥	7	30,	4	ŭ	Ø	7	ŏ	ğ	10

	4419	4143	3869	3599	3337	3085	2846	2624	2420	2236
	4401	4123	3847	3575	3310	3055	2815	2590	2385	2200
	4382	4102	3824	3550	3283	3026	2783	2556	2349	2163
	364	382	302	526	256	397	751	522	313	125
	4345	4061	3779	3501	3229	2967	2718	2487	2276	2087
	4326	4041	3756	3476	3201	2936	2685	2452	2239	2048
	4307	4020	3733	3450	3173	2906	2652	2416	2201	2009
	4287	3998	3710	3425	3145	2874	2618	2379	2162	1969
z	4268	3977	3687	3399	3116	2843	2584	2342	2123	7 1928 1969 2009 2048 2087 2
NGU]	4248	3956	3663	3373	3088	2811	2549	2305	2084	1437 1484 1530 1578 1624 1670 1713 1759 1802 1845 1887 1928
2 FE	4223	3934	3640	3347	3053	2780	2514	2267	2043	1845
1	4209	3913	3616	3320	3030	2747	2479	2229	2002	1802
CODE	4189	3891	3592	3294	3000	2715	2443	2190	1961	1759
1/9	4169	3869	3568	3268	2971	2683	2407	2150	1918	1713
ONC	4149	3848	3544	3241	2942	2650	2371	2111	1876	1670
PRAN	4129	3826	3521	3215	2913	2617	2334	2070	1832	1624
S S	4110	3805	3497	3189	2883	2584	2297	2030	1788	1578
) AC	4090	3783	3474	3163	2854	2552	2261	1989	1743	1530
14/0	4073	3765	3453	3140	2828	2522	2226	1950	1700	1484
CA	4057	3747	3433	3117	2802	2492	2192	1910	1656	1437
	4040	3728	3413	3094	2776	2462	2157	1870	1611	1388
	4023	3710	3392	3072	2750	2432	2123	1830	1566	1339
	4007	3692	3372	3049	2725	2402	2088	1790	1519	1288
	3990	3674	3352	3027	2699	2373	2053	1749	1472	1236
	3973	3655	3332	3004	2674	2344	1985 2019	1708	1425	1182
	3957	3638	3313	2983	2649	2315	1985	1668	1376	1128
	3941	3620	3294	2962	2625	2287	1952	1628		1072
S.	3925	3604	3278	2942	2603	2261	1920 1952 1	1589	1279	1015
	10.	20.	30	.04	50	60,	70,	80	90°	100

*	240	941	641	344	352	767	3492	230	2986	2760
	125 52						3463 34			2724 25
	10 52									
	5 5210	0 49(5 46(11 43(11 400	8 37	5 3434	5 316	3 29	0 2688
	3 5195						3405			2650
	5179	487.	4566	426(395.	366	3375	3102	284	2612
	5163	4855	2546	4238	3933	3634	3344	3069	2236	2573
	5146	4836	4525	4215	3907	3606	3313	3035	2773	2534 2573
	5129	4818	4505	4192	3882	3577	3282	3000	2736	2493
	1112	799	484	169	856	548	250	965	697	452
××	5094	4779	1462	4145	3830	3519	3217	2929	2658	0 2324 2363 2410 2
H.A	5075	1753	4441	4121	3803	3490	3185	2893	2619	2363
XODE:	057 5	739 4	419	097	776	460	3151	856 2	578	324 2
26/7 0	5039 5	719 4	396	372 4	749 3	429 3	118	818 2	537 2	2280 2
3 26	319 5	988 4	574 4	47 4	722 3	399 3	383 3	780 2	195 2	2235 2
STRANDING	00 20	77 46	551 43	22 40	94 3	68 3	49 30	42 27	53 24	89 22
STRAI	81 50	58 46	28 43	97 70	96 36	37 33	14 30	03 27	10 24	1 2142 2189
ACSR 9	61 49	35 46	05 43	72 39	38 36	33	79 30	34 27	37 24	2094 21
	11 4961	3 46.	31 433	6 39	9 36.	4 33(4 29	2 266	3 23(9 200
477kCM	1 4941	2 461	8 428	1 394	1 360	3 327	3 2944	5 264	3 232	7 204
47							2909			
	4901									1947
	4881									1896
	4860	4527	4188	3844	3794	3149	2803	2465	2142	1845
	4841	\$506	4165	3819	3470	3118	2768	2425	2097	794
	4821	4485	4143	3795	3443	3088	2734	2386	2051	1741
	1802	1465	4121	3771	3417	3059	9 2701 2734 2	7347	9002	689
	4783 4802	445 4	1000	748	3391	3031	699	310 2	962 2	1637 1
	4766 4	426 4	079 4	726 3	367 3	304 3	2638 2	274 2	918	1585
	749 4	108 4	360 4	706 3	344 3.	378 31	308 24	239 2.	377 13	1533 1.
	0. 47	0, 44	30, 40	0,3	0, 33	0, 26	.0, 56	0, 22	90, 18	30° 15
	-	CA	M	4	Ω	9	1	00	O	1

FOR THE EQUIVALENT TABLE WITH INITIAL SAG IN INCHES, PLEASE REFER TO STANDARD DRAWING 440,1-5.

NEW BARE OVERHEAD CONDUCTOR INITIAL TENSION, in pounds

INITIAL TENSION TABLE 2 OF 3

DWG REV: 12/4/12

DISTRIBUTION
CONSTRUCTION
STANDARDS

	PRIMARY	CONDUCTORS	S & ACCESSORIES	
--	---------	------------	-----------------	--

Issued: 12/4/2012

DWG: 440.1-9

General

440.1-9

46

200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 SPAN, in feet 180 190 170 100 110 120 130 140 150 160 90 80

	2001	1835	1671	1511	1360	1220	1095	986	893	816
	1983	1815	1650	1488	1336	1195	1069	961	869	792
	1964	1795	1628	1466	1311	1170	1044	935	844	768
	1945	1775	1606	1442	1287	1144	1018	606	819	744
	1926	1755	1585	1419	1262	1118	992	883	793	719
	1907	1734	1563	1395	1237	1092	965	857	292	695
,	1888	1714	1540	1372	1212	1066	938	830	742	670
WINC	1869	1693	1518	1347	1186	1039	911	803	716	645
WAXV	1853	1676	1499	1326	1163	1014	882	778	691	621
ODE:	1841	1662	1484	1309	1143	992	362	754	299	598
18/1	1829	1648	1468	1291	1123	970	838	729	643	575
36.78	1816	1634	1451	1272	1101	946	813	704	618	551
SIKANDING	1802	1618	1434	1253	1080	922	787	678	592	526
S	1788	1603	1416	1232	1057	897	761	651	266	501
ACSR	1773	1586	1395	1212	1033	871	733	623	539	475
7 997	1757	1569	1379	1190	1009	344	704	594	511	449
. 1	1741	1551	1369	1168	983	816	675	265	483	423
	1724	1533	1338	1144	957	787	644	534	453	395
	1707	1513	1317	1120	930	756	611	502	423	367
	1688	1493	1294	1095	901	724	578	469	392	339
	1669	1472	1271	1069	872	691	543	434	361	310
	1648	1450	1247	1042	841	959	206	399	328	281
	1627	1427	1222	1014	809	620	467	362	294	251
	10.	20.	30.	.04	20.	.09	70.	80.	.06	100

	3785	3418	3077	2769	2498	2265	2068	1902	1762	1643
	3780	3407	3060	2746	2470	2233	1865	1724	1606	1419
	3775	3396				2200				
	3770	3385				2166				
	3765	3374				2131				
		3364				2095				
	_	3353				2059				
SN.		3342				2022				
ARBUT						1984				
	3741	3321	2919	2548	2221	1945	1719	1537	1392	275
CODE:						1900				
G 37	3691	5260 3	2845 2	462	2123 2	1839 1	019	429 1	287 1	173 1
ANDING	650	3214	794 2	404	2061	1775 1	546	368 1	228 1	118
STRA	209	3166	740	344	997	1709 1	481	305	168	. 190
AAC						1640 1				
795						1569 1				
						1494				
	414 3					1417 1				
	3360 3		3 -0	- 10		1337 1		- 00		
	304 3		-	20 10		1253 1				
	245 3	_		- 20		1166 1	2.1.2			
	183 3	2696 2	-			1075 1				
	119 3	• •				980				
	10,	20, 2	30° 2	40.	50° 1.	60.09	70.	30.08	30.	00
		- 4	. ,	- 4	-,					•

NEW BARE OVERHEAD CONDUCTOR INITIAL TENSION, in pounds

FOR THE EQUIVALENT TABLE WITH INITIAL SAG IN INCHES, PLEASE REFER TO STANDARD DRAWING 440.1-7.

INITIAL TENSION TABLE 3 OF 3

DWG REV: 2/4/08

DWG: 440.1-10

DISTRIBUTION
CONSTRUCTION
STANDARDS

47

440-1-11.tif

Conductor loadings are recommended by ALCOA but with initial loadings @ 0 reduced to 30% of UTS.

FINAL SAG TABLE, in feet

.56 4.79 .54 4.76 .95 6.20 7.28 6.60 6.49 350 6.62 6.10 6.48 340 95 23 282 9.0 5. 4.4.0 6.00 4.34 4.32 5.72 330 63 02 54 97 ø. 500 4.11 4.11 5.48 320 6.30 5.70 5.71 27 53 81 6 8 N 50.50 310 7.96 5.99 5.42 5.46 5.43 5.00 5.46 3.90 3.91 5.25 82 ∞ 300 5.14 4.74 5.22 3.69 5,18 5,45 8,25 8.26 7.42 6.68 5.68 5.13 5.21 4.86 4.48 4.97 3.49 3.50 4.79 290 7.72 6.89 6.15 5.37 4.86 4.97 5.18 90 6.0 4.67 4.91 7.61 5.07 4.59 4.73 4.59 4.23 4.73 280 7.19 6.38 5.63 33 W. W. 4 4.78 4.32 4.49 4.32 3.98 4.50 270 4.37 4.64 7.30 6.69 5.89 5.14 3.09 3.11 4.35 6.20 5.42 4.67 260 4.49 4.06 4.06 3.74 4.27 92 4.10 4.38 6.98 V1 V1 4 250 3.85 4.12 6.67 5.73 4.97 4.22 4.21 3.80 4.03 6.19 6.12 7.90 81 52 06 77 74 92 W W 4 dair 5.70 3.60 5.28 4.54 3.80 3.55 3.57 3.30 3.86 2.52 5.24 5.17 6.91 3.35 3.62 6.06 4.92 4.22 3.55 3.67 3.31 3.58 3.34 3.09 3.66 2.34 2.38 3.50 4.79 4.72 6.44 3.11 2.88 3.46 3.11 3.38 5.76 58 93 34 3.40 3.07 3.35 2.17 2.21 3.29 4 W.W 2.88 feet 210 2.00 2.05 3.09 4.36 4.30 5.99 2.87 3.14 5.46 4.25 3.64 3.13 3.16 2.85 3.17 , 200 200 3.96 3.89 5.56 2.66 2.48 3.08 3.93 3.36 2.92 2.92 2.64 2.98 1.83 1.88 2.90 2.65 2.91 5.17 SPAN, 190 2 2.42 2.68 4.87 3.62 3.08 2.72 2.69 2.44 2.80 45 28 89 1.67 3.57 3.51 5.14 2000 2.91 3.20 2.86 3.14 4.43 4.75 2.00 2.21 2.25 2.46 4.30 4.58 2.25 2.47 2.05 2.24 2.44 2.62 3.32 2.82 2.52 24 10 70 1.09 | 1.23 | 1.37 | 1.52 | 1.14 | 1.28 | 1.42 | 1.57 | 1.97 | 2.14 | 2.33 | 2.51 | 180 COSMOS Ninin 3.02 2.04 1.91 2.51 56 22 | 2.13 | 2.38 | 2.64 | 2 | 2.12 | 2.36 | 2.61 | 2 | 3.55 | 3.84 | 4.13 | 4 CODE: 2.46 2.74 2.08 2.32 1.96 2.14 1.66 1.85 2 1.56 1.73 1 2.15 2.33 . 95 | 1.10 | 1.26 | 1.43 | 1.60 | 1.80 | 1.16 | 1.32 | 1.49 | 1.66 | 1.84 | 2.04 | 2.70 | 2.96 | 3.22 | 3.48 | 3.74 | 4.02 | 1.27 | 1.45 | 1.64 | 1.84 | 2.04 | 1.17 | 1.33 | 1.50 | 1.68 | 1.86 | 1.60 | 1.76 | 1.93 | 2.10 | 2.27 | (AAC) SPARROW 2|1.95|2.20|2.4 1.85 1.79 1.30 1.48 1.23 1.39 1.81 1.98 .96 .0. PIGEON ALLUMINUM CONDUCTOR 1.65 1.89 2 1.67 1.89 2 2 2.99 3.27 1.65 1.65 .89 90 100 110 120 130 ALLUMINUM CONDUCTOR CODE | CODE: S 1.45 1.13 1.08 1.64 772 CONDUCTOR 1.04 1.22 1.43 1 1.08 1.26 1.46 1 2.20 2.45 2.72 1.09 1,44 .93 74 199. .91 1.08 1.26 1.09 1.23 1.37 CONDUCTOR CONDUCTOR .67 .81 .86 1.00 2.20 2.45 CONDUCTOR 1.08 1.28 .79 12.05.4 .93 .86 1.28 .68 .66 4.5 477kCM ALL S ACSR .55 .72 1.95 .89 .75 .95 .59 52.50 .86 .91 ALL ALL 397.5kCM #2 ACSR #2/0 0° 32° 167° #3/0 32, 32° 167° 32° 167° 32,0 32° 167°

FINAL SAG TABLE FOR BARE OVERHEAD CONDUCTORS

NOTE: For 266 ACSR & 795 AAC, consult standards engineers.

The sag for $0_{\rm u}$ includes 1/2" ice and 4 p.s.f. wind. The sag for $32_{\rm u}$ includes 1/2" ice.

167_u F = 75_u

DWG REV: 1/30/08

FINAL SAG TABLE 1 OF 2

KCP&L

DISTRIBUTION CONSTRUCTION STANDARDS

PRIMARY CONDUCTORS & ACCESSORIES

DWG: **440.1-11** Issued: 1/1/2008

General

440.1-11

	330 340		1 4.43 4.65 9 4.51 4.73 1 6.15 6.40	330 340		3 4.09 4.30 5 4.16 4.37 5.73 5.97			FOR OVERHEAD CONDUCTORS	
	300	-	4.23 4.29 7.59	320		3.88 3.96 5.49		TABLE	ndNo	
	동		3 3.99 7 4.08 3 5.67	310	-	3.67 3.76 3.5.26		SAG 1	FOR SAD C	
	S. C.		7 3.78 3 3.87 0 5.43	300		3.47		FINAL SAG	VERHI	
	S		3.57	290		3 3.28 3.37 4.80			BARE (
	CRC	-	3.36	280		3.08 3.18 4.58			ш	
	020		3.16 7 3.26	270		2.89 2.99 4.36				
	Š		3 2.97 3 3.07 9 4.51	260		2.7.7 2.84 4.44				
	S. C.		2,78	250		2,53				
	040		2.59 2.70 4.07	240		2.36 2.45 1 3.72				
پ	230		3 2.41 1 2.52 1 3.86	230		2.28 2.28 3.51				
FINAL SAG TABLE, in feet	8	-	2.23	220		2.02				
TABLE,	et S	i	2.06	8		1.86		ances	d the	
SAG	SPAN, in feet		1.89 2.00 3.23	200		1,70 1,80 19.91		alclear	energized conductors apply under conditions that produce the Use whichever is the greater sag in the above table and the objects from Division 11. The greater sags are underlined.	O
FINAL	SPA	3	1.83	190		1.55		t vertic	ins that bove ta	75*
	ğ	3	1.57 1.67 2.82	180		1,41 1,50 2,52		ent tha	condition the attention sags	
	, 7		7 1.42 7 1.52 8 2.65	170		1,27 1,36 5 2,34		aquiren	under c sag in greate	167* F
	Ğ		1.27 1.37 2.46	160		1.14		the F	energized conductors apply under Use whichever is the greater sag objects from Division 11. The greater streams of the contract of the contrac	ģ
	Å C		1.13	150		1.09 1.09 1.97		include	uctors the g ivision	.s.f. wir
	£	<u></u>	1.00	140	N9926	98. 96. 1.80		1990	conditional	id 4 p
_	C&L	çı	3 96 1	130	HAWK	77. 8		<u>ه</u> چ	energized cor Use whichever objects from	ice ar ice.
nended igs @	č C	; ÿ	1,75 1,75 1,71	120	CODE:	3 .66 .73 1.46		E S	_	tes 1/2" Ides 1/2
recomn Noadin	, ‡		15. 15. 15.	4	CONDUCTOR CODE: HAWK	1.30		Changes to the NESC for 1990 include the requirement that vertical clearances	to objects from largest final sag. separation from	for 0° includes 1/2" ice and 4 p.s.f. wind. for 32° includes 1/2" ice.
s are r th initia	2 } }	UCTO	45. 06. 1.36	90	ONDOC	52, 52		Chang	to obj largest separa	for 0°
oading but wit	g 8	COND	4 8 8	8	ACSR CC	86, 4, 1, 28		NOTE		The sag
Conductor loadings are recommended by ALCOA but with initial loadings @	2 g 8 _	2-40 ACSR CONDUCTOR	.35 .40 1.04	8		£. \$.			DIE	
Q Q	15 P	240	0° 82° 167°	TEMP.	477kCM	0° 32° 167°	DWG REV: 0:	2550 1000	BLE 2 (OF 2 440.1-12

The following table lists the horizontal displacement from the "at rest" condition of conductors at mid-span. The NESC minimum conductor wind loading of 6 p.s.f. at a temperature of 60°F was used.

CONDUCTOR HORIZONTAL DISPLACEMENT, in feet

			Conductor				
SPAN <u>feet</u>	#3/0 AAC	477 AAC	#2 ACSR	#2/0 ACSR	#3/0 ACSR	2-4/0 T-2	397.5 ACSR
80	.69	.54	.23	.23	.22	.19	.15
90	.79	.63	.28	.28	.28	.24	.19
100	.90	.72	.34	.34	.33	.28	.23
110	1.01	.81	.41	.41	.40	.34	.27
120	1.13	.90	.49	.48	.47	.39	.32
130	1.25	1.00	.55	.55	.53	.45	.37
140	1.38	1.09	.64	.62	.61	.51	.42
150	1.51	1.20	.71	.70	.69	.58	.48
160	1.67	1.31	.80	.78	.77	.65	.54
170	1.90	1.41	.89	.87	.85	.71	.60
180	2.18	1.52	.98	.96	.94	.79	.66
190	2.49	1.63	1.09	1.05	1.03	.86	.73
200	2.81	1.76	1.18	1.15	1.12	.94	.79
210	3.14	1.87	1.30	1.25	1.21	1.02	.87
220	3.49	1.99	1.47	1.35	1.31	1.10	.94
230	3.87	2.12	1.78	1.46	1.41	1.19	1.02
240	4.25	2.26	2.13	1.56	1.52	1.27	1.09
250	4.66	2.40	2.52	1.67	1.62	1.36	1.17
260		2.55	2.90	1.78	1.73	1.45	1.25
270		2.69	3.28	1.89	1.84	1.55	1.33
280		2.84	3.67	2.01	1.95	1.64	1.42
290 300 310		3.00 3.15	4.10 4.54 5.01	2.13 2.26 2.38	2.07 2.19 2.31	1.74 1.84 1.94	1.51 1.60 1.69
320 330 340			5.50	2.50 2.63 2.80	2.43 2.56 2.69	2.04 2.15 2.25	1.78 1.88 1.97
350				2.96	2.81	2.36	2.07

IMPORTANT NOTE

The NESC requires horizontal clearances between objects and energized conductors to be the greater of two distances:

the greater of two distances:
(1) the separation to a conductor at rest, or
(2) the separation to a conductor at 60 F. blown by a 6 p.s.f. wind towards the object. This table provides the displacement of the conductor by the wind. The values for the separations to specific objects to conductors at rest and displaced by wind are listed in Division 11. As an example, the NESC requires a minimum "at rest" clearance between buildings and lines of 34kV, or less, of 7.5 feet. It also requires a minimum wind displaced conductor clearance of 4.5 feet. From the above table, a 270' span of #2 ACSR has a 3.28' blow out. When added to the 4.5', a minimum clearance of 7.8' is required from a straight line between the a minimum clearance of 7.8' is required from a straight line between the attachment points.

50

NOTE

Consult standards engineering for 266ACSR & 795AAC information.

CONDUCTOR **BLOW OUT BY WIND TABLE** OF HORIZONTAL DISPLACEMENTS

DWG: 440.1-13 DWG REV: 2/5/08

DISTRIBUTION
CONSTRUCTION
STANDARDS

Overhead 600V Secondary and Service Cable

	Overneda Goov Goodha	ary and son	vice odbie				Iced 1/2'	1
Stock <u>Number</u>	<u>Description</u>	<u>Ampacity</u>	Nominal Insulation <u>Thickness</u>	Overall* Diameter (inches)	Breaking Strength (pounds)	Weight (lb/ft)	Vertical Loading (lb/ft)	INDUSTRY IDENT. CODE
420-224	477 AA	610	5/64"	.95	8360	.574	1.476	HUCKLEBERRY
420-228	4 duplex (4 ACSR messenger)	103	.045"	.57	1860	.117	.82	TERRIER
420-212	4 triplex (2-4 AA w/ 4 ACSR messenger)	103	.045"	.66	1860	.182	.90	PERIWINKLE
420-221	1/0 triplex (2-1/0 AA w/ 1/0 ACSR messenger)	200	.060"	1.02	4380	.42	1.37	NERITINA
420-226	1/0 quadruplex (3-1/0 AA w/ 1/0 ACSR messenger)	180	.060"	1.20	4380	.57	1.71	STANDARDBRED
420-222	3/0 triplex (2-3/0 AA w/ 3/0 ACSR messenger)	265	.060"	1.23	6620	.62	1.70	CHERRYSTONE
420-001	3/0 quadruplex (3-3/0 AA w/ 3/0 AA messenger)	240	.060"	1.46	3040	.68	2.81	TROTTER
420-207	336.4 triplex (2-336.4 AA w/ 336.4 AA messenger)	438	.080"	1.63	6150	1.12	2.44	NANNYNOSE
420-208	336.4 quadruplex (3-336.4 AA w/ 3/0 ACSR messenger)	390	.080"	1.90	6620	1.44	3.03	

Ampacities are Aluminum Association values for wind and sun condition, XLP, 90 deg C. *circumscribed circle in case of cables

TRIPLEX CABLE DATA ACSR REDUCED SIZE BARE NEUTRAL-MESSENGER

					11000		OILL DINK							
				PHAS	E CONDUC	TORS				NEUT	RAL COND	UCTORS		
SI: AV PHASE	VG	STRANDS AND STRAND	DIAM.	INSULATION THICKNESS	TOTAL DIAM.	OHMS/	INDUCTIVE REACTANCE	AMPACITY (AMPS)	& STRAND	BARE DIAM.		INDUCTIVE REACTANCE		TOTAL WEIGHT PER 1000
		DIAMETER (INCHES)	(INCHES)	(MILS)	(INCHES)	1000 FT. (75℃)			DIAM. (INCHES)	(INCHES)	1000 FT. (75°C)		POUNDS	FT.
2	4	70974	.292	45	.386	.3182	.029	120	6/10834	.250	.5064	.030	1830	224.2
1/0	2	190745	.373	60	.498	.2002	.029	160	6/11052	.316	.3182	.029	2790	361.6
4/0	2/0	191055	.528	60	.653	.1001	.027	245	6/11490	.447	.1589	.028	5345	681.8

QUADRUPLEX CABLE DATA ACSR BARE NEUTRAL-MESSENGER

ı							MOSIV D	ANL NEO IN	ML-MILDOL	INGLIV					
	1/0	1/0	190745	.373	60	.498	.2002	.029	140	6/11327	.398	.216	.029	4280	224.2
	4/0	4/0	191055	.528	60	.653	.1001	.027	210	6/11878	.563	.116	.027	8420	361.6
	500	266.8	371162	.831	80	.985	.0425	.026	460	26/70788	.642	.078	.026	11250	681.8
	750	477	611109	.998	80	1.200	.0286	.026	604	26/71054	.858	.0437	.026	19450	681.8

							ı
500.1-3	50	DWC:	DWG REV: 12/13/07	1. 12/	20/	DWG	
USE	SS	CLA	600V CLASS USE	OVERHEAD	ERT	9	2
RR S	SOL	M AND ACSR	& COI	ALUMINUM CABLES &		_	

KCP&L

DISTRIBUTION CONSTRUCTION STANDARDS

OH SECONDARIES & SERVICES-GENERAL

Issued: 1/1/2008

General

500.1-5

Appendix A-2: Westar Energy Conductor Properties, Sag and Tension Tables
52

						COPPER BARE			
				BREAKING	MAX				
	NO OF	OVERALL	BARE WT	STRENGTH (CURRENT		SDB		HDB
SIZE	STRANDS	DIA (IN)	(LB/FT)	LBS)	(AMPS)	CU NAME	ITEM ID	➤ CU NAME	ITEM ID
6	1	0.162	0.08	1280	144	WRCU6SD	0161200	CNDCU6HDB	0148800
4	1	0.204	0.129	1970	187	WRCU4SD	0161300	CNDCU4HDB	0148900
2	1	0.258	0.205	3000	243	WRCU2SD	0161400	CNDCU2HDB	0149000
1	3	0.360	0.256	3620	270				0150000
1/0	7	0.368	0.326	4750	318	CNDCU1/0SDB	7621007	CNDCU1/0	0150200
2/0	7	0.414	0.411	5927	362	CNDCU2/0SDB	0151102	CNDCU2/0HDB	0150300
4/0	7	0.522	0.654	9154	470	CNDCU4/0SD	0151130	CNDCU4/0HDB	0150500
300	19	0.629	0.927	13510	573		7626590		
500	19	0.811	1.544	21950	758	CNDCU500SDB	7626635		
750	61	0.998	2.316	34090	942	CNDCU750SDB	7626680		

			СОР	PERWELD	EHS BARE		
				BREAKING	MAX		
	NO OF	OVERALL	BARE WT	STRENGTH	CURRENT		
SIZE	STRANDS	DIA (IN)	(LB/FT)	(LBS)	(AMPS)	➤ CU NAME	ITEM ID
3NO 10	3	0.220	0.087	3720	110	CNDCW3-10	0151700

				ACSR	BARE *			
CODE NAME	SIZE	NO OF STRANDS	OVERALL DIA (IN)	BARE WT (LB/FT)	BREAKING STRENGTH (LBS)	MAX CURRENT (AMPS)	CU NAME	ITEM ID
SPARROW	2	6/1	0.316	0.091	2790	*	CNDAL2	0162702
RAVEN	1/0	6/1	0.398	0.145	4380	*	CNDAL1/0	0162802
QUAIL	2/0	6/1	0.447	0.183	5310	*	CNDAL2/0	0162900
PENGUIN	4/0	6/1	0.563	0.291	8350	*	CNDAL4/0	0163100
OWL	266	6/1	0.633	0.342	9680			7650574
PARTRIDGE	266	26/7	0.642	0.367	11300	*	CNDAL266	0163200
LINNET	336	26/7	0.721	0.463	14100	*	CNDAL336	0163300
HAWK	477	26/7	0.858	0.657	19500	*	CNDAL477	7650640
OSPREY	556	18/1	0.879	0.604	13700	*	CNDAL556	0163600
FLAMINGO	666	24/7	1.000	0.858	23700	*	CNDAL666	7650642
DRAKE	795	26/7	1.108	1.094	31500	*	CNDAL795	0163800
RAIL	954	45/7	1.165	1.075	25900	*	CNDAL954	7650645
T-2 RAVEN	21/0		0.652	0.290	8760	*	CNDAL1/0T2	0162801
T-2 PENGUIN	24/0		0.922	0.582	16700	*	CNDAL4/0T2	7650190
T-2 PARTRIDGE	2-266		1.051	0.735	22600	*	CNDAL266T2	0163201
T-2 HAWK	2-477		1.405	1.314	39000	*	CNDAL477T2	7650192

NOTES:

- * FOR MAX CURRENT (AMPS) SEE LCS 7-020
- ☐ AMPACITIES FROM EBASCO TABLE M 551 A 40°C AMBIENT, 40°C RISE WIND 2 FPS.

NOTE: UNLESS SPECIFIED	PHYSICAL								
٨	9	12/12/16	MCG	НМ	RO	WESTAR ENERGY, INC. CHARACTERISTICS			
SIV hot on Finance	8	12/31/13	KD	JJR	BB	ALL RIGHTS RESERVED	OF CONDUCTORS		
Westar Energy.	NO.	DATE	BY	CK	APP	SHEET 1 OF 1	LCS 7 -040 REV 9		

ALUMINUM UNDERGROUND CABLE SINGLE CONDUCTOR 600 VOLT XLP INSULATION

						AMPACITY TRIPLEXED	AMPACITY
							SINGLE
ITEM ID	► CU CODE	CONDUCTOR	NO. OF	SINGLE CABLE	DIAMETER	BURRIED IN CONDUIT	CONDUCTOR
		SIZE	STRANDS	LBS/FT	(INCHES)		IN AIR
0144500	CBLUAL1/0	1/0	19	0.154	0.54	154	200
0144800	CBLUAL4/0	4/0	19	0.281	0.69	232	312
0144900	CBLUAL350	350 MCM	37	0.441	0.88	313	431
0145000	CBLUAL500	500 MCM	37	0.612	1.01	383	544
0145100	CBLUAL750	750 MCM	61	0.905	1.2	482	707
0145200	CBLUAL1000	1000 MCM	61	1.162	1.33	562	853

ALUMINUM UNDERGROUND CABLE FACTORY MULTIPLEXED

600 VOLT XLP INSULATION

		CONDUCTOR	NEUTRAL	NO. OF	MULTI-	DIAMETER	AMPACITY	
ITEM ID	ITEM ID ► CU CODE		SIZE	STRANDS	PLEXED	(INCHES)	BURIED IN	(40° C AMB)
		SIZE	3122	3110.003	(LBS/FT)	(IIICIIES)	CONDUIT	IN AIR
0144000	CBLUALTPX1/0	1/0 TRI	2	19	0.416	1.13	160	215
0144300	CBLUALTPX4/0	4/0 TRI	2/0	19	0.729	1.47	241	285
7655751	CBLUALTPX350	350 TRI	4/0	37	1.158	1.85	326	364
8005006	CBLUALQPX1/0	1/0 QUAD	2	9	0.534	1.24	160	215
0144350	CBLUALQPX4/0	4/0 QUAD	2/0	18	0.971	1.59	241	285
7655752	CBLUALQPX350	350 QUAD	4/0	30	1.527	2.01	326	364

ALUMINUM OVERHEAD SERVICE CABLE

ITEM ID	► CU CODE	TYPE	COND SIZE	NEUTRAL	DIAMETER (INCHES)	MULTI-PLEXED (LBS/FT)	AMPACITY
0146502	CBLALDPX6	DUPLEX	6	6	0.452	0.075	70A
0146901	CBLALTPX2	TRIPLEX	2	4	0.75	0.228	130A
0147002	CBLALTPX1/0	TRIPLEX	1/0	2	0.95	0.366	185A
7655411	CBLALTPX4/0	TRIPLEX	4/0	2/0	1.26	0.681	295A
0147401	CBLALQPX1/0	QUADRUPLEX	1/0	1/0	1.12	0.549	175A
7655419	CBLALQPX4/0	QUADRUPLEX	4/0	4/0	1.49	1.038	275A

N TES:

ONDU TOR T RATUR 0° ARTH A BI NT 75% LOAD FA TOR IN TH TRIPLEX C NFIGURATI N.

A A ITI SAR FRO I A -46-4 6 TABL S FOR 90° ONDU TOR T RATUR AND 40° AIR A BI NT.

AMPACITIES ARE FR M ALUMINUM ASS CIATI N TABLE 10-1.

4 WESTAR ENERGY USES XLP INSULATI N F R ITS ST CKED 600-V LT CABLES.

NOTE: UNLESS SPECIFIED	PHYSICAL								
٨	8	12/12/16	MCG	НМ	RO	WESTAR ENERGY, INC. CHARACTERISTICS			
SIV Post our Engages	7	1/22/16	MCG	JJR	BB	ALL RIGHTS RESERVED	OF CONDUCTORS		
Westar Energy.	NO.	DATE	BY	CK	APP	SHEET 1 OF 1	LCS 7 -050 REV 8		

ALL ALUMINUM-BARE EC-H19 ASTMB231

CODE WORD	SIZE	STRANDING	DIAMETER	WEIGHT LBS/FT	BREAKING STRENGTH LBS	MAXIMUM CURRENT	ITEM ID.
IRIS	2	7	.292	.0623	1350	180	7650630
ASTER	2/0	7	.414	.1249	2510	280	7650620
OXLIP	4/0	7	.522	.1986	3830	380	7650622
SYRINGA	477	37	.795	.4478	8690	645	7650639
ARBUTUS	795	37	1.026	.7463	13900	900	7650644
MAGNOLIA	954	37	1.124	.896	16400	1010	0164050

☐ 40° AMBIENT 50°C RISE IN AIR WIND 2 FPS FROM ALUMINUM ASSOCIATION TABLES

COPPER CABLE SINGLE CONDUCTOR 600 VOLT XLP INSULATOR

ITEM ID.	► CU CODE	CONDUCTOR SIZE	NO. OF STRANDS	SINGLE CABLE LBS/FT	AMPACITY TRIPLEXED* BURRIED IN CONDUIT	AMPACITY A SINGLE CONDUCTOR IN AIR
7651330	-	2	7	0.243	153	192
7651342	CBLUCU1/0600V	1/0	19	0.384	204	258
7651345	CBLUCU3/0	3/0	19	0.591	268	345
7651360	CBLUCU350	350	37	1.190	416	552
0156500	CNDCUWP500	500	37	1.681	509	695
7651370	CBLUCU750	750	61	2.511	636	898
0158000	CBLUCU1000	1000	61	3.316	731	1076

* AMPACITIES ARE FROM IPCEA P-46-426 TABLES FOR RHO 90, 90°C CONDUCTOR TEMPERATURE, 20°C EARTH AMBIENT, 75% LOAD FACTOR IN THE TRIPLEX CONFIGURATION.

 Δ AMPACITIES ARE FROM IPCEA P-46-426 TABLES FOR 90, 90°C CONDUCTOR AIR AMBIENT.

NOTE: UNLESS SPECIFIED	PHYSICAL								
٨	4	12/12/16	MCG	НМ	RO	WESTAR ENERGY, INC.	CHARACTERISTICS		
SIVIngton Francis	3	12/31/13	KD	JJR	BB	ALL RIGHTS RESERVED	OF CONDUCTORS		
Westar Energy.	NO.	DATE	BY	CK	APP	SHEET 1 OF 1	LCS 7 -060 REV 4		

	SAG TABLE DESIGN PARAMETERS - COMMON CONDUCTORS										
CONDU	CTOR	RULING SPAN	MAXIMUM DESIGN TENSION AT 0° F, 0.5" ICE, 4 LBS. WIND, INITIAL								
		FEET	% of RATED TENSILE STRENGTH (RTS)	POUNDS							
477.0 ACSR	"HAWK"	175	19.2%	3750							
26/7	RTS = 19500	200	20.5%	4000							
		250	24.1%	4700							
		300		5000							
266.8 ACSR	266.8 ACSR "PARTRIDGE"		21.2%	2400							
26/7	RTS = 11300	200	23.0%	2600							
		250	26.8%	3025							
		300	36.5%	3400							
1/0 AWG ACSR	"RAVEN"	175	31.1%	1365							
6/1	RTS = 4380	200	33.8%	1480							
		250	38.8%	1700							
		300	43.8%	1920							
				,							
#2 AWG ACSR	"SPARROW"	175	40.0%	1075							
6/1	RTS = 2850	200	40.7%	1160							
		250	46.8%	1335							
		300	52.1%	1485							

NOTES:

MAXIMUM ALLOWABLE STANDARD TENSION ON HARDWARE PER WESTAR POLICY IS 5000 LBS. THIS IS APPROXIMATELY HALF OF A TYPICAL MANUFACTURER'S RATING FOR HARDWARE (10000 LBS). FOR DESIGNS OUTSIDE THESE PARAMETERS, CONSULT ENGINEERING.

- 2 LOWER RULING SPANS ARE PREFERRED BECAUSE OF LOWER CONDUCTOR TENSION. THE DESIGNER CAN LOWER THE RULING SPAN BY SHORTENING SPAN LENGTHS WHEN SPANS LENGTHS ARE NOT CONTROLLED BY DESIGN REQUIREMENTS. SEE LCS 7-067 FOR INFORMATION ON CALCULATING THE RULING SPAN. CALCULATING RULING SPAN INCORRECTLY OR SELECTING THE WRONG SAG TABLE WILL RESULT IN INCORRECT CONDUCTOR TENSION AND SAG VALUES.
- 3 FOR NEW CONSTRUCTION, RULING SPANS OF 175 AND 200 FEET ARE CONSIDERED STANDARD. RULING SPANS OF 250 AND 300 FEET ARE CONSIDERED NON-STANDARD.
- 4 DOWNGUYS MAY BE NECESSARY FOR DIFFERENTIAL TENSIONS AT DOUBLE-DEADENDS USING THE SAME CONDUCTOR BUT DIFFERENT RULING SPANS, AND THEREFORE DIFFERENT TENSIONS. CONSULT STANDARDS IF ASSISTANCE IS NECESSARY TO DETERMINE THE NECESSITY OF AN ADDITIONAL DOWNGUY OR ALTERNATIVE METHOD OF HANDLING THE DIFFERENTIAL TENSIONS.
- 5 SAG VALUES COMPLETED ON 10/25/2015 WITH SOUTHWIRE SAG 10 SOFTWARE, VERSION 3.10.7.

NOTE: UNLESS SPECIFIED	NOTE: UNLESS SPECIFIED OTHERWISE, ALL DIMENSIONS ARE IN INCHES.							
٨						WESTAR ENERGY, INC. SAG TABLE DESIGN PARAMETERS		
SIVInct on Finance	0	1/22/16	MCG	LRR	RO	ALL RIGHTS RESERVED		
Westar Energy.	NO.	DATE	BY	CK	APP	SHEET 1 OF 1	LCS 7 -065 REV 0	

RULING SPAN CALCULATIONS

RULING SPANS:

DESIGNERS SHALL CALCULATE RULING SPAN VALUES AND NOTE THEM ON THE PLANS FOR THE JOB.

SAG VALUES ARE DEPENDENT ON THE CALCULATION OF A RULING SPAN. THIS INVOLVES CONSIDERING ALL SPANS IN A JOB FROM DEADEND-TO-DEADEND.

A CALCULATED RULING SPAN WILL ALWAYS BE EQUAL OR GREATER TO THE AVERAGE SPAN, ALTHOUGH A RULING SPAN CAN SOMETIMES BE APPROXIMATED BY AN AVERAGE SPAN. IF ALL SPANS IN A JOB ARE THE SAME THE RULING SPAN AND AVERAGE SPAN ARE EQUAL. (SIMILARLY, IF ONLY ONE SPAN EXISTS BETWEEN TWO DEADENDS THE RULING SPAN IS THE SPAN LENGTH.) AS THE VARIANCE BETWEEN THE SPANS INCREASE, THE GREATER THE RULING SPAN WILL BE VERSUS THE AVERAGE SPAN. THIS IS THE REASON FOR USING AN ACTUAL RULING SPAN CALCULATION INSTEAD OF A SIMPLE AVERAGE.

A RULING SPAN IS THE SQUARE ROOT OF THE SUM OF THE CUBE OF EACH SPAN DIVIDED BY THE SUM OF THE SPANS. A VISUAL REPRESENTATION OF THIS FOLLOWS:

$$\sqrt{\frac{S1^3 + S2^3 + S3^3 \dots}{S1 + S2 + S3 \dots}}$$

FORTUNATELY, THERE ARE MANY FREE WEBPAGES AND EVEN PHONE APPS FOR THE PURPOSE OF CALCULATING A RULING SPAN, SO MANUAL CALCULATIONS MAY NOT ALWAYS BE NECESSARY.

SEE SECTION 3 OF RURAL UTILITIES SERVICE (RUS) BULLETIN 1724E-152 FOR ADDITIONAL INFORMATION ON RULING SPAN.

IMPORTANT - CONSIDER LONG SPANS AGAINST RULING SPAN:

AFTER A NUMBER IS CALCULATED FOR A RULING SPAN AND A RULING SPAN IS CHOSEN FROM THE FOUR AVAILABLE TABLES, IT IS HIGHLY RECOMMENDED TO LOOK AT ALL SPANS IN A JOB TO SEE IF ANY SPAN EXCEEDS 1.25 TIMES THE CHOSEN RULING SPAN VALUE. THIS ENSURES THE SAG WILL NOT BE MORE THAN PREDICTED FOR THE LONGEST SPANS IN THE JOB. USING THE EXAMPLE ABOVE, THE HIGHEST SPAN LENGTH (230) DOES NOT EXCEED (1.25 x 200 =) 250 FEET. IF IT DID, CORRECTIVE ACTION SHOULD BE TAKEN. THIS COULD BE DONE BY EITHER:

- 1. BUMPING UP TO THE NEXT RULING SPAN, -OR-
- 2. DEADENDING TO ISOLATE THE LONG SPANS SO AS TO REMOVE THEM FROM THE RULING SPAN CALCULATION. SINCE THE LONG SPANS THEMSELVES WOULD LIKELY BE TENSIONED HIGHER, AS THEY WOULD BE PART OF THEIR OWN RULING SPAN CALCULATION, THIS MAY REQUIRE GUYS TO HANDLE THE DIFFERENTIAL TENSION AT THE POLE(S) AT THE NEW DEADENDS CREATED.

MOST OF THE TIME SIMPLY USING THE NEXT HIGHER RULING SPAN WILL TAKE CARE OF THE PROBLEM BUT THE DEADEND OPTION MAY BE WORTH CONSIDERATION IN SOME CASES.

-	DENO	TES L	ATEST	REVISION
---	------	-------	-------	----------

NOTE: UNLESS SPECIFIED OTHERWISE, ALL DIMENSIONS ARE IN INCHES.						DUILING ODAN		
٨						WESTAR ENERGY, INC.	RULING SPAN CALCULATIONS	
SIVInct on Finance	0	1/22/16	JJR	LRR	RO.	ALL RIGHTS RESERVED		
Westar Energy	NO.	DATE	BY	CK	APP	SHEET 1 OF 1	LCS 7 -067 REV 0	

RULING SPAN CALCULATIONS

OUNDING

CALCULATED RULING SPAN SHOULD BE ROUNDED UP OR DOWN TO ONE OF THE STANDARD RULING SPANS. THIS IS DONE SIMPLY BY CONSIDERING WHICH NUMBER THE RULING SPAN IS CLOSER TO. FOR EXAMPLE, A CALCULATED RULING SPAN OF 220 FEET IS ROUNDED DOWN TO THE 200-FOOT STANDARD SPAN, A CALCULATED RULING SPAN OF 228 FEET IS ROUNDED UP TO THE 250-FOOT STANDARD SPAN.

IT IS IMPORTANT TO CONSIDER WHETHER THE LONGEST SPANS IN A RUN VIOLATE THE 125% RULE. IF A RULING SPAN IS CALCULATED TO BE 220 FEET AND A STANDARD SPAN OF 200 FEET IS CHOSEN, AND UPON LOOKING AT THE SPAN LENGTHS WE FIND TWO SPANS OF 260 FEET, IT MIGHT BE PRUDENT TO INSTEAD USE THE STANDARD 250-FOOT SPAN.

CONSULT STANDARDS FOR MORE INFORMATION.

M

AN EXAMPLE CALCULATION FOLLOWS. CONSIDER FOUR SPANS

SPAN 1 = 200 SPAN 2 = 230

SPAN 3 = 190

SPAN 4 = 195

THE CUBES CAN BE FOUND:

SPAN 1: 8000000 SPAN 2: 12167000 SPAN 3: 6859000

SPAN 4: 7414875 --> SUM OF THESE CUBES IS 34440875

THE SUM OF CUBES (34440875) DIVIDED BY THE SUM OF SPANS (815) IS 42258.7. WE THEN TAKE THE SQUARE ROOT OF THAT NUMBER TO GET A RULING SPAN OF 205.6. NOTE THIS IS SLIGHTLY HIGHER THAN THE AVERAGE SPAN OF 203.8. THE SAG TABLES GIVE US FOUR OPTIONS TO CHOOSE FROM FOR A RULING SPAN FOR THE JOB (175, 200, 250, AND 300). FOR THIS CASE, WE WOULD USE A 200-FOOT RULING SPAN FROM THE SAG TABLES.

NOTE: UNLESS SPECIFIED OTHERWISE, ALL DIMENSIONS ARE IN INCHES.						DIII ING ODANI		
٨						WESTAR ENERGY, INC.	RULING SPAN CALCULATIONS	
SIV hot on Fin own.	0	1/22/16	JJR	LRR	RO	ALL RIGHTS RESERVED	CALCULATIONS	
Westar Energy.	NO.	DATE	BY	CK	APP	SHEET 2 OF 2	LCS 7 -067 REV 0	

Appendix B-1: MIL-STD-105D Variable Definitions for Field Measurements

<u>Definition of Defects</u>

Major Defect

- Incorrect pole measured
- Incorrect pole type (species) recorded
- Incorrect pole class recorded
- Incorrect type of construction recorded
- Existing conductor or equipment not accounted for
- Lack of minimum ground clearance measurement for the lowest cable or conductor along each span in each unique direction to the pole
- Existing steel reinforcing truss not accounted for

Minor Defect

- Pole Facility height measurements off by more than 6"
- Conductor or cable span measurements off by more than 2'
- Line angle measurement for primary voltage conductors or 1" or larger communications conductors off by more than 2 degrees
- Line angle measurement for secondary, service drop, or communications conductors smaller than 1" off by more than 5 degrees
- Conductor, cable, or equipment type and size off by the next common size

Variable Definitions

- General Inspection Level II (Table I of MIL-STD-105D) shall be used
- Single Sampling Plan shall be used
- 'Normal' inspection level shall be used as the <u>initial</u> inspection level for each attaching entity or its agents
- The Acceptable Quality Level (AQL) for Major Defects, as described above, shall be 4.0
- The AQL for Minor Defects, as described above, shall be 6.5

Appendix B-2: MIL-STD-105D Variable Definitions for Pole Loading Analysis

<u>Definition of Defects</u>

Critical Defect

- Incorrect pole analyzed
- Pole not analyzed that meets criteria requiring modeling
- Pole loading analysis results indicate an overloaded pole as not being overloaded
- Remedy for overloaded pole or clearance violations do not resolve pole overload or clearance violation
- Remedy for overloaded pole or clearance violations violate NESC or Company Construction Standards
- Pole loading analysis results off by more than 20%

Minor Defect

- Incorrect Final Tension values calculated and recorded on the Pole & Facility Data Sheet
- Incomplete or incorrect data based on data recorded in the Pole & Facility Data Sheet (Checker's field data corrections shall not be considered a defect for this area)
- Not accounting for all loads in the pole loading analysis
- Improper modeling of loads in the pole loading analysis
- Not modeling loads based on the most recent NESC Tables 251-1 and 261-1A
- Not providing data (all necessary and accurately defined) on proposed attachment(s)
- Improper modeling and analysis of steel reinforcing truss (analysis above and below truss required), if applicable
- Improper modeling and analysis of wickers, if applicable
- Improper pole loading analysis program settings
- Pole loading analysis results off by more than 5%

Variable Definitions

- General Inspection Level II (Table I of MIL-STD-105D) shall be used
- Single Sampling Plan shall be used
- 'Normal' inspection level shall be used as the <u>initial</u> inspection level for each attaching entity or its agents
- The Acceptable Quality Level (AQL) for Major Defects, as described above, shall be 1.0
- The AQL for Minor Defects, as described above, shall be 4.0

Appendix B-3: MIL-STD-105D Variable Definitions for As-Built Construction

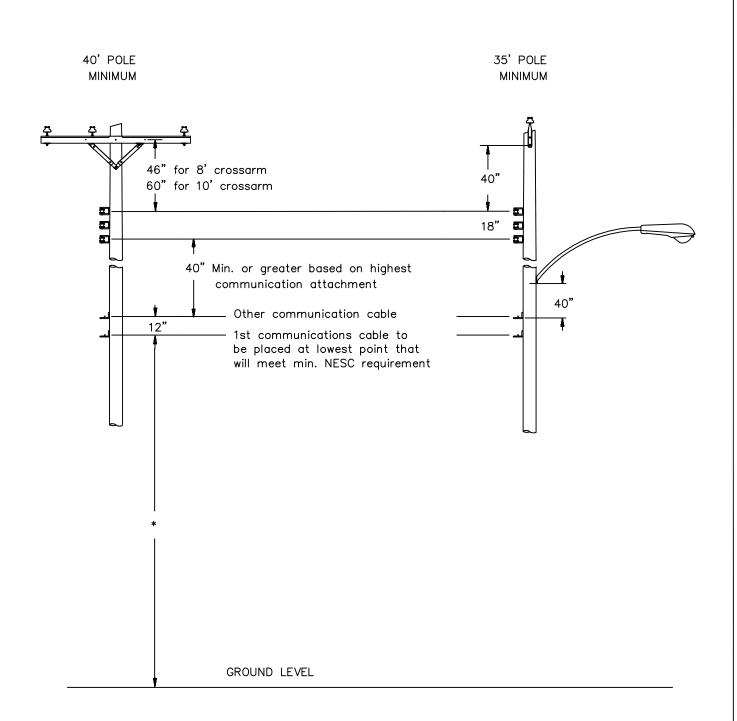
<u>Definition of Defects</u>

Critical Defect

- NESC clearance violations exist
- Violations to Company clearance requirements exist
- Through bolt holes drilled within 3" (vertically measured) or another through bolt hole

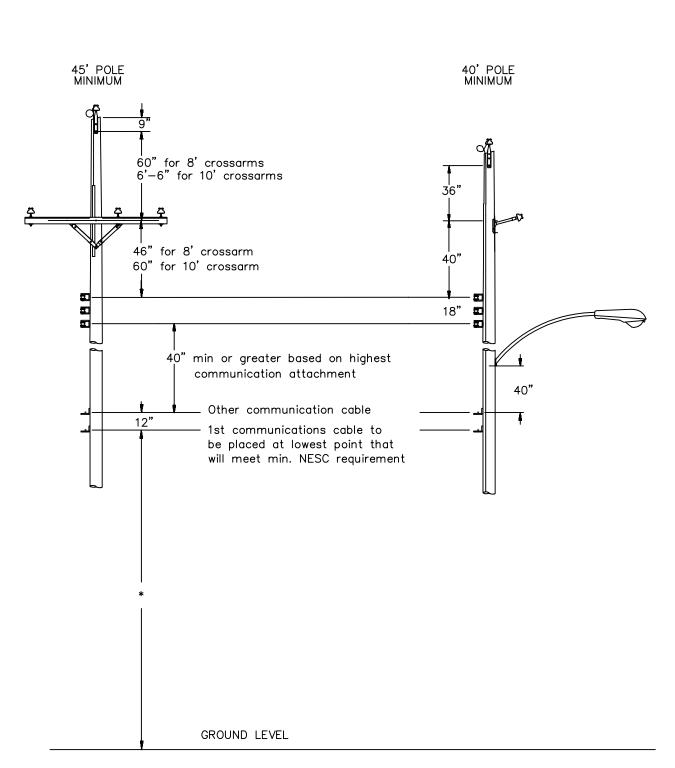
Major Defect

- Construction does not reflect pole or clearance remedy design
- Attachment installed is larger or heavier than proposed in the attachment application
- Assigned facility positioning order is not adhered to in the make-ready or construction
- New conductor or cable facilities are not attached to each pole in the cable's route
- New facilities installed on a cross arm or on the opposite side of the pole as the other existing attacher's facilities
- Tenant's facilities are not properly guyed
- Tenant's guys are attached to Company anchors
- Tenant's guys are missing insulators
- Vertical and horizontal runs of tenant's facilities are improperly constructed and installed per NESC and Company Construction Standards.

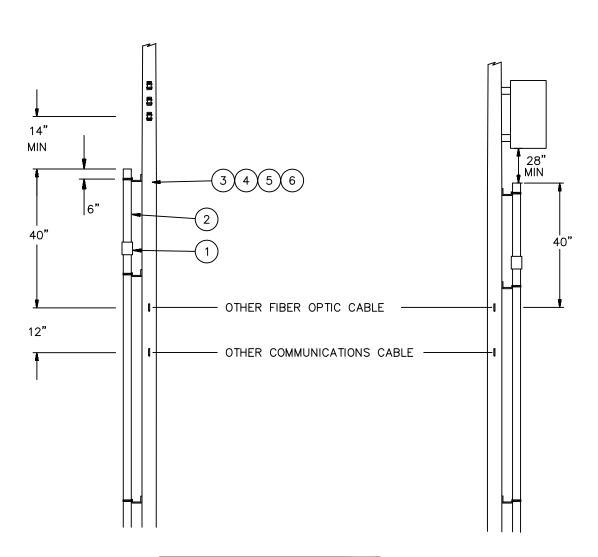

Minor Defect

- Missing, improperly installed, or improperly located tenant tag.
- Tenant Tag installed does not meet Tenant Tag Material Specifications (see Appendix D).
- Installation of tenant's facilities infringe upon climbing and working space on the pole
- Abandoned bolt holes resulting from make-ready or construction are not plugged

Variable Definitions


- General Inspection Level II (Table I of MIL-STD-105D) shall be used
- Single Sampling Plan shall be used
- 'Normal' inspection level shall be used as the <u>initial</u> inspection level for each attaching entity or its agents
- The Acceptable Quality Level (AQL) for Critical Defects, as described above, shall be 1.0
- The AQL for Major Defects, as described above, shall be 4.0
- The AQL for Minor Defects, as described above, shall be 6.5

Appendix C: Drawings

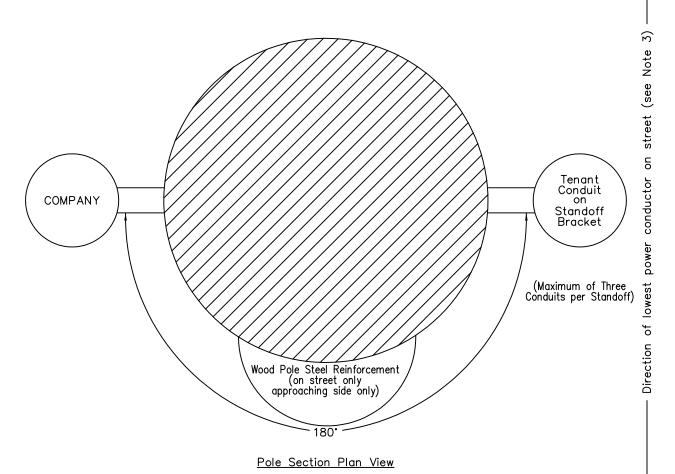

^{*}Lowest communications attachment height is dictated by achieving minimum ground clearance allowed by NESC at any point in a span.

SPACING FOR POLE ATTACHMENTS (UNSHIELDED CONSTRUCTION)

^{*}Lowest communications attachment height is dictated by achieving minimum ground clearance allowed by NESC at any point in a span.

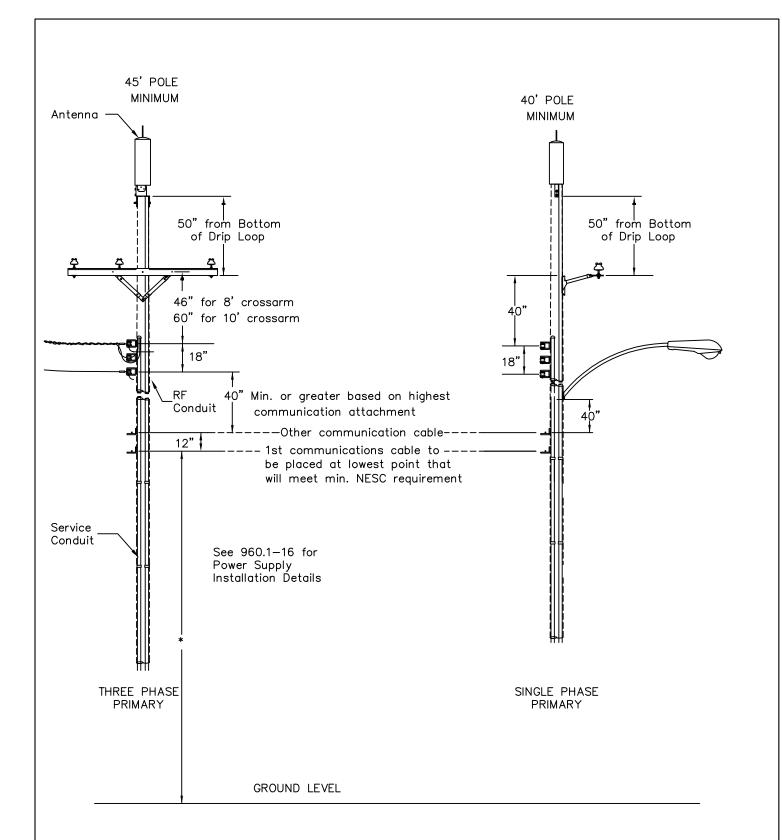
SPACING FOR POLE ATTACHMENTS (SHIELDED CONSTRUCTION)

	QUANTITY	STOCK	TOCK NUMBER		
DUCT SIZE	1/2" STEEL BANDING	SPLIT DUCT	SPLIT COUPLING		
2"	1.5'	450-010	450-013		
3"	2'	450-011	450-016		
4"	2.5'	450-012	450-014		
5 "	3'	D.O.	D.O.		
6"	3.5'	D.O.	D.O.		


D.O. - DIRECT ORDER

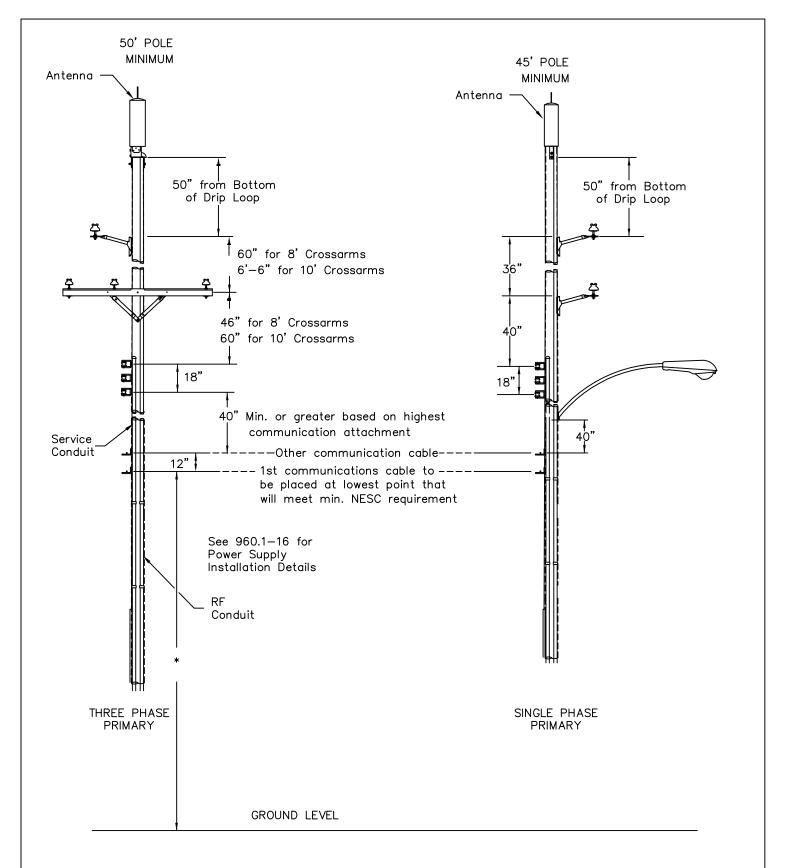
6	SEE TABLE	1/2" STEEL BANDING	453-070
5	1	1/2" X 4" LAG SCREW	409-064
4	1	1/2" BANDING BUCKLE	453-072
3	1	STANDOFF BRACKET	406-084
2	SEE TABLE	SPLIT DUCT PIPE	SEE TABLE
1	SEE TABLE	SPLIT DUCT COUPLING	SEE TABLE
ITEM	QUAN	DESCRIPTION	STK NO

DUST RISER EXTENSION SECONDARY SERVICES


DWG REV: 09/21/04 DWG:**960.1-10**

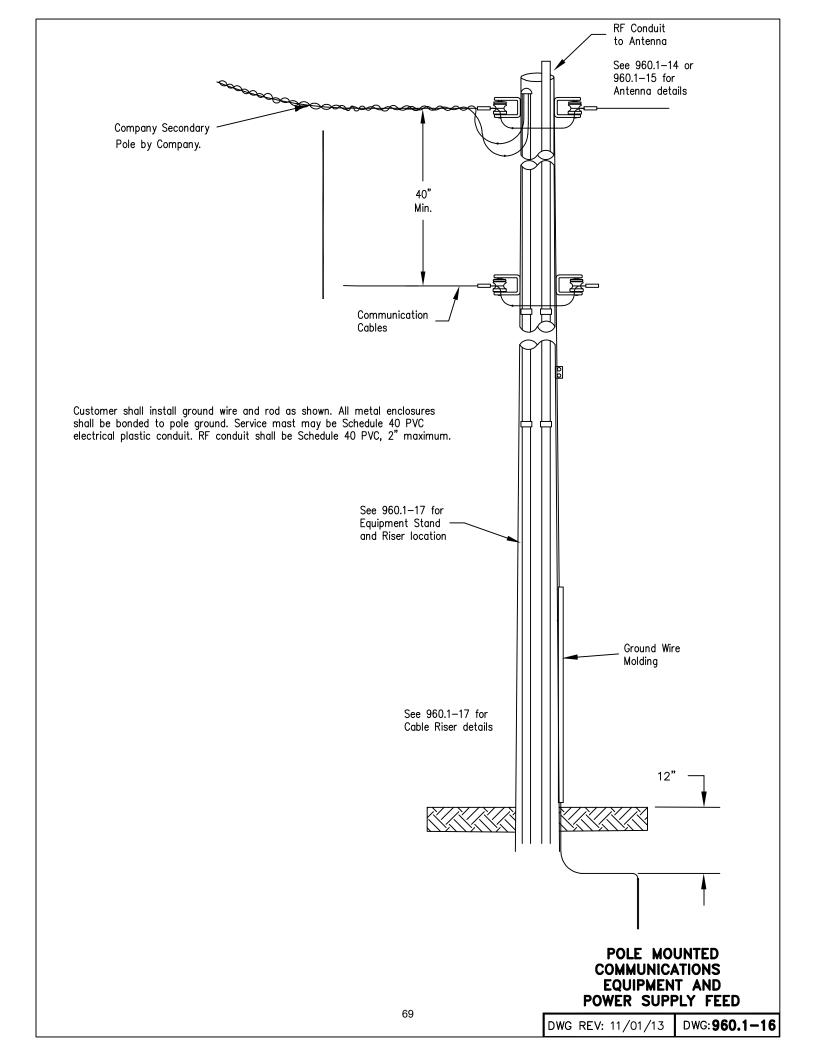
– Direction of lowest power conductor off street (see Note 3) —

- NOTES:
- 1. TENANT'S CONDUIT ON STANDOFF BRACKETS MUST NOT OCCUPY MORE THAN 180 OF POLE SECTION PERIPHERY.
- 2. ILLUSTRATION IS AN EXAMPLE ONLY AND IS NOT INTENDED TO INDICATE A PARTICULAR ORDER OR QUANTITY OF DEVICES OR RISERS ON A POLE.
- 3. LOWEST POWER CONDUCTOR MAY BE SECONDARY, NEUTRAL, OR PRIMARY DEPENDING ON STYLE OF CONSTRUCTION.
- 4. THERE SHALL BE NO MORE THAN TWO STANDOFF BRACKETS PER POLE AS SHOWN ABOVE. ONE STANDOFF BRACKET WILL BE RESERVED FOR FUTURE KCPL FACILITIES.


MAXIMUM POLE RISER **OCCUPANCY**

*LOWEST COMMUNICATIONS ATTACHMENT HEIGHT IS DICTATED BY ACHIEVING MINIMUM GROUND CLEARANCE ALLOWED BY NESC AT ANY POINT IN A SPAN.

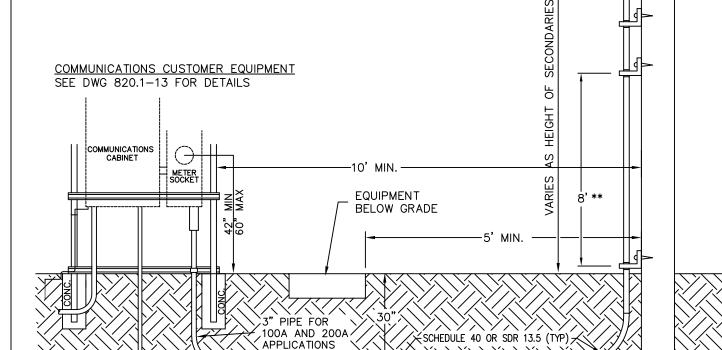
SEE 960.1-17 FOR EQUIPMENT STAND AND RISER LOCATIONS.


SPACING FOR
POLE ATTACHMENTS
(UNSHIELDED CONSTRUCTION)

^{*}Lowest communications attachment height is dictated by achieving minimum ground clearance allowed by NESC at any point in a span.

See 960.1-17 for Equipment Stand and Riser Locations.

SPACING FOR POLE ATTACHMENTS (SHIELDED CONSTRUCTION)



NOTES:

- A. APPROVED METER SOCKET FURNISHED AND INSTALLED BY CUSTOMER. DO NOT USE METER SOCKET TO ENCLOSE OR TERMINATE HIS SYSTEM GROUND.
- B. INSULATED BUSHING FURNISHED AND INSTALLED BY CUSTOMER.
- C. INSTALL CONDUIT SLIP JOINT TO COMPENSATE FOR SOIL SETTLING. LEAVE SUFFICIENT SLACK IN SERVICE CONDUCTORS TO ALLOW JOINT TO WORK.
- D. DO NOT USE CENTER KNOCKOUT FOR INCOMING CONDUIT.
- E. ALL CONDUIT—ELECTRICAL PLASTIC WHOLE INCH SIZE CONDUIT FURNISHED, PROPERLY INSTALLED, OWNED AND MAINTAINED BY CUSTOMER. COMPANY TO INSPECT BEFORE BACKFILLING.
- F. COMMERCIAL CUSTOMERS MUST PROVIDE AND INSTALL CABLE, LEAVE ENOUGH CABLE TO GO UP THE POLE.
- G. CONDUITS MAY BE INSTALLED IN JOINT TRENCH MEETING REQUIREMENTS OF 960.1—13. FOREIGN SERVICE CONDUITS TO BE A MINIMUM OF 18" FROM COMPANY.
- H. INSTALL 2-HOLE CLAMP ABOVE ELBOW TO STAND. LEAVE CLAMP LOOSE TO ALLOW SLIP JOINT TO WORK.
- J. COMMUNICATIONS, RF AND SERVICE COUDUITS SHALL BE BANDED TO ONE SET OF STAND—OFF BRACKETS.
- K. BELOW GRADE EQUIPMENT MUST BE 5' MINIMUM FROM POLE.
 - ** THE DISTANCE BETWEEN THE BOTTOM STANDOFF BRACKET AND THE SECOND STANDOFF BRACKET SHALL BE 8'.

JOINT

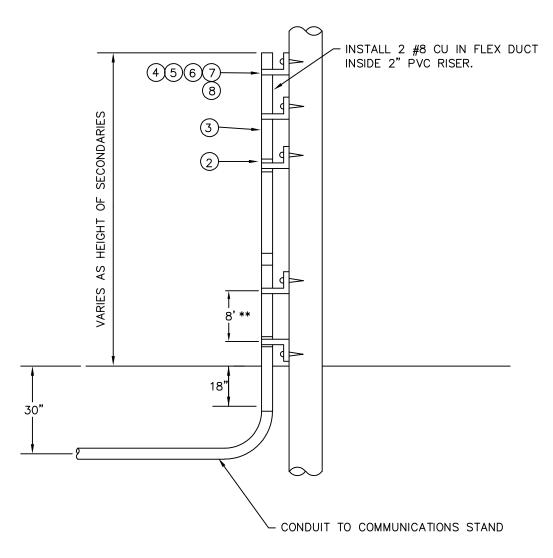
TRENCH

2" OR AS REQUIRED FOR -

ANTENNA

CABLE RISER FOR COMMUNICATION TERMINAL POLES

SEE 960.1-14 FOR ANTENNA DETAILS SEE 960.1-16 FOR SERVICE DETAILS


DWG REV: 12/09/13

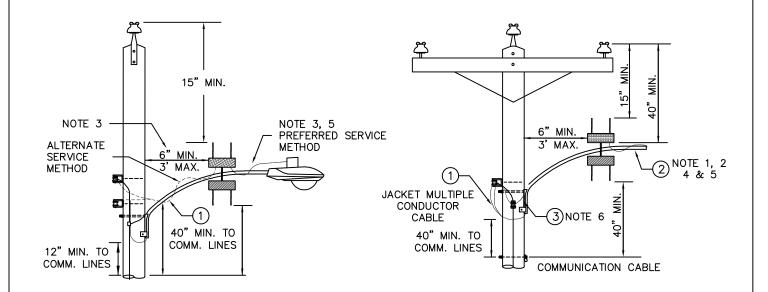
CONDUIT TO

COMMUNICATIONS

STAND, 960.1-12

DWG:960.1-17

NOTE:


- 1. INSTALL PIPE AS HIGH AS CONNECTIONS WILL ALLOW. INSTALL TWO STANDOFF BRACKETS PER 10' SECTION OF PIPE ABOVE BOTTOM SECTION.
- * AS REQUIRED
- ** THE DISTANCE BETWEEN THE BOTTOM STANDOFF BRACKET AND THE SECOND STANDOFF BRACKET SHALL BE 8'.

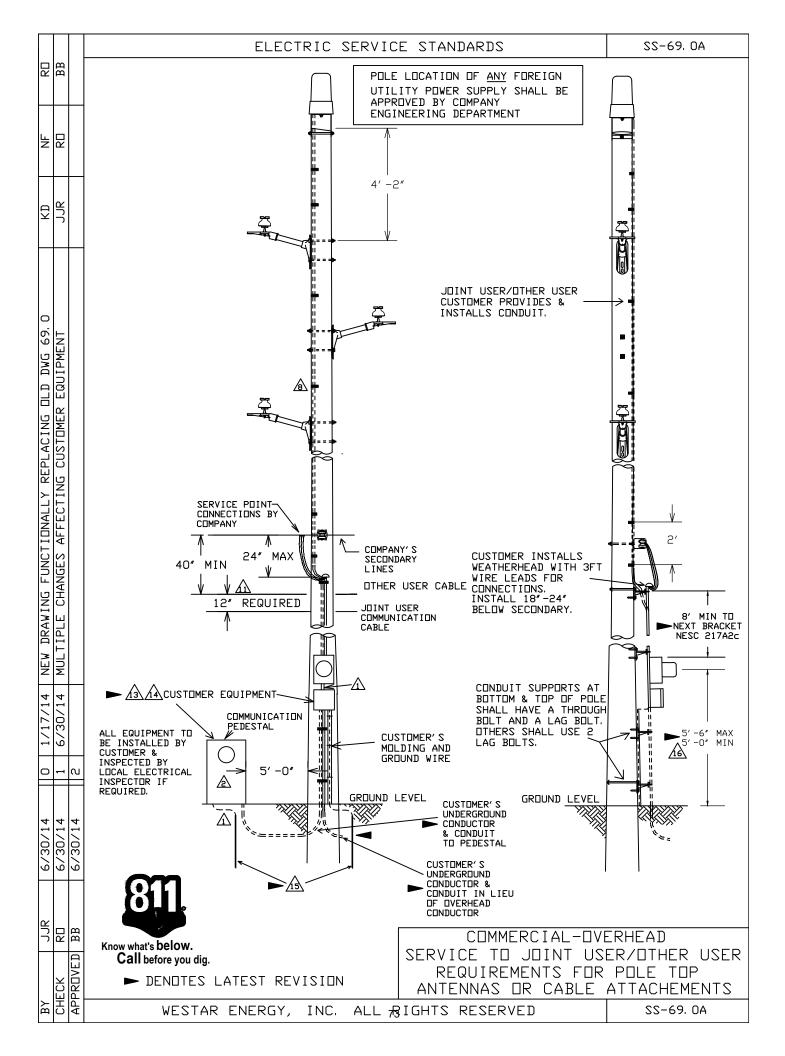
MU-6SRP-2

ITEM	QUAN	DESCRIPTION	STK NO
2	*	2" COUPLING	450-063
3	*	2" PLASTIC PIPE	450-057
4	*	STANDOFF BRACKET	406-084
5	*	1/2" X 4" LAG SCREW	409-064
6	*	1/2" STEEL BANDING	453-070
7	*	1/2" BANDING BUCKLE	453-072
8	*	RISER BRACKET MULTIPLE PIPE ADT	406-001

CABLE RISER FOR COMMUNICATION TERMINAL POLES

DWG REV: 08/02/11 DWG:**960.1-18**

EXISTING OPEN WIRE SECONDARY

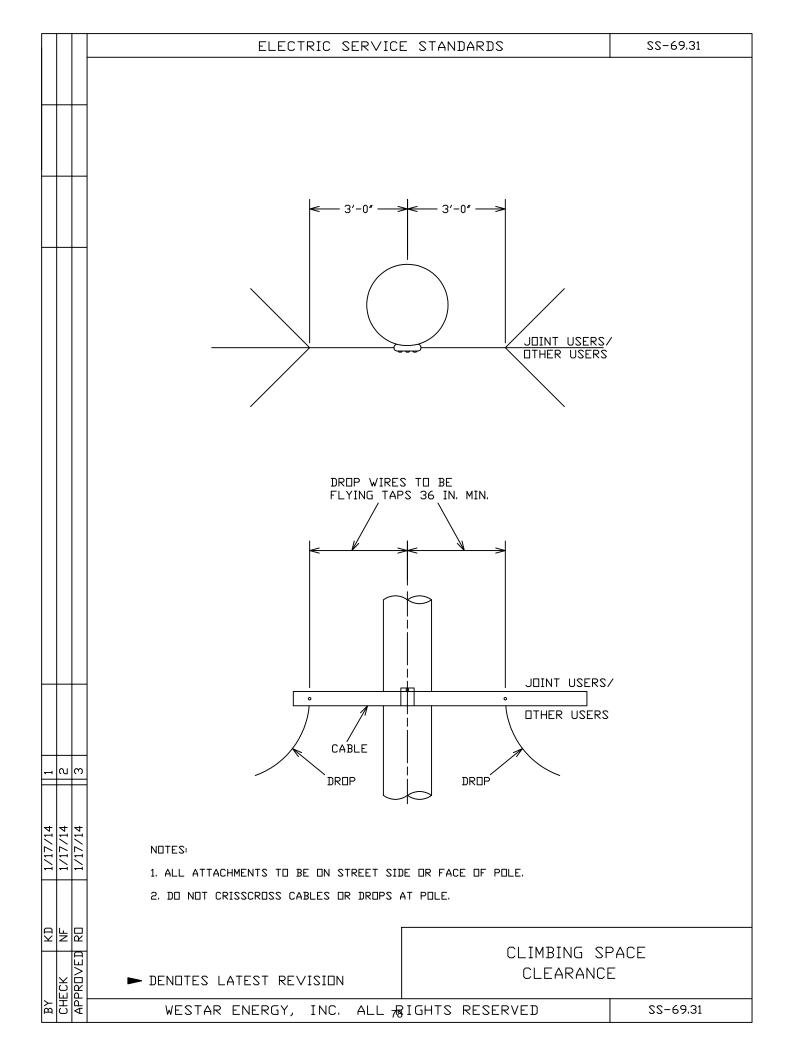

AND STREET LIGHT

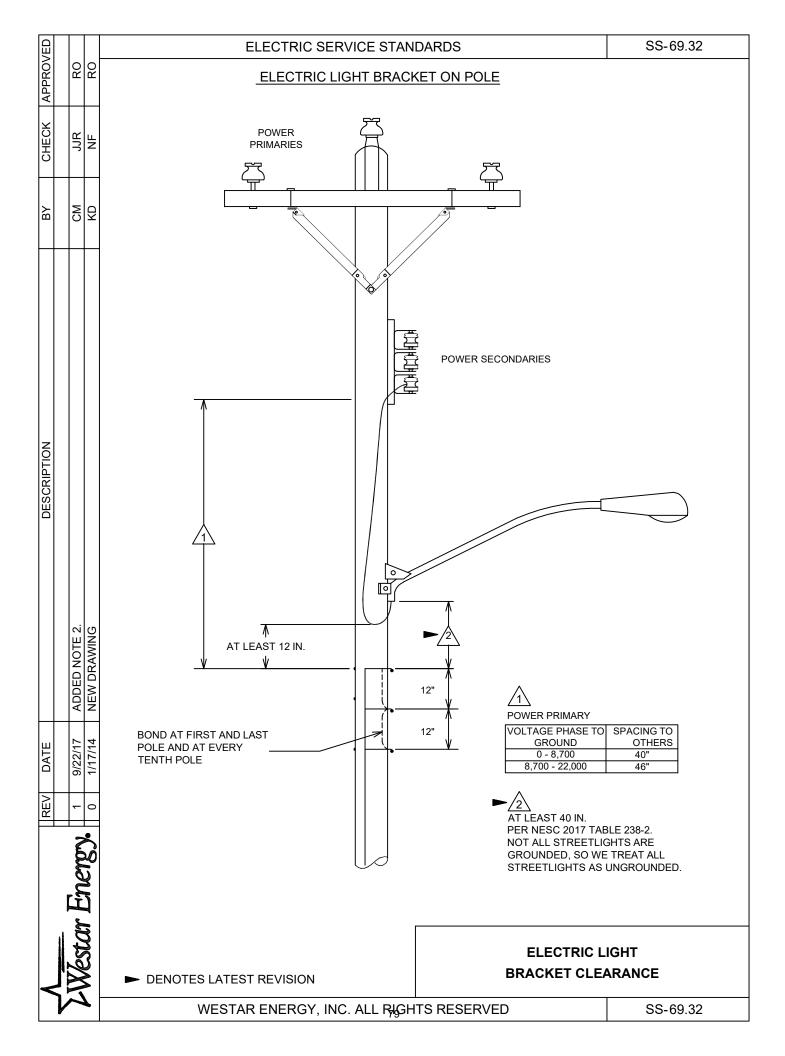
CABLE SECONDARY, NO STREET LIGHT

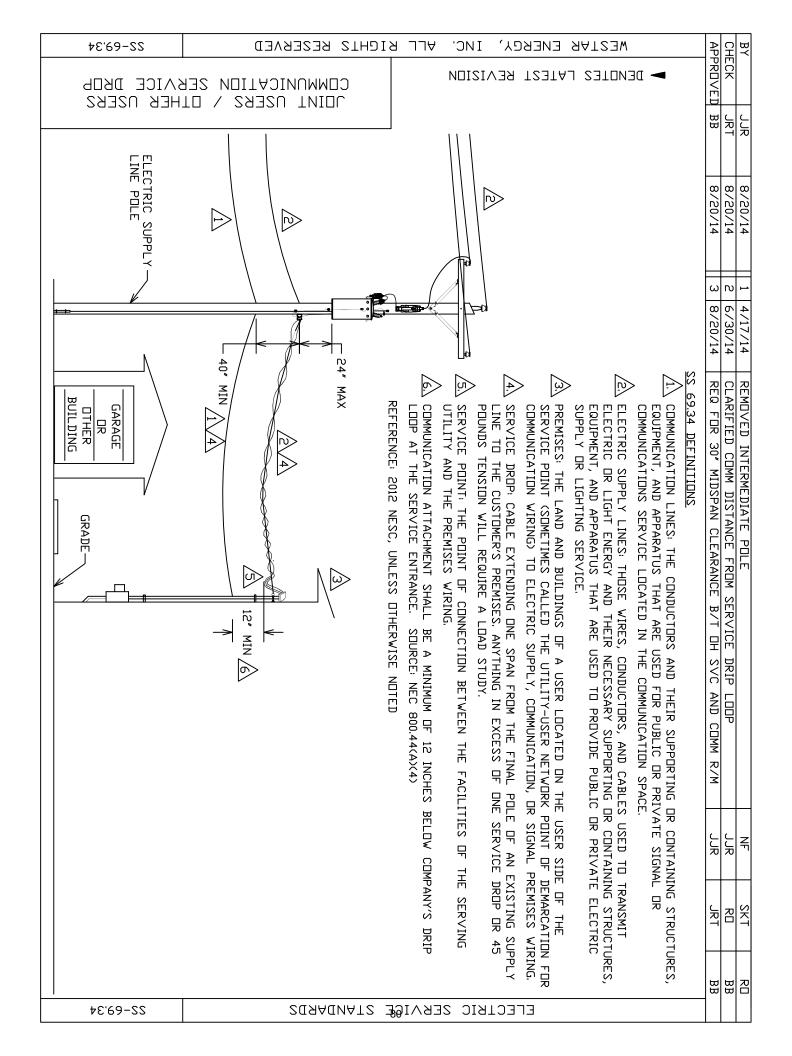
NOTE:

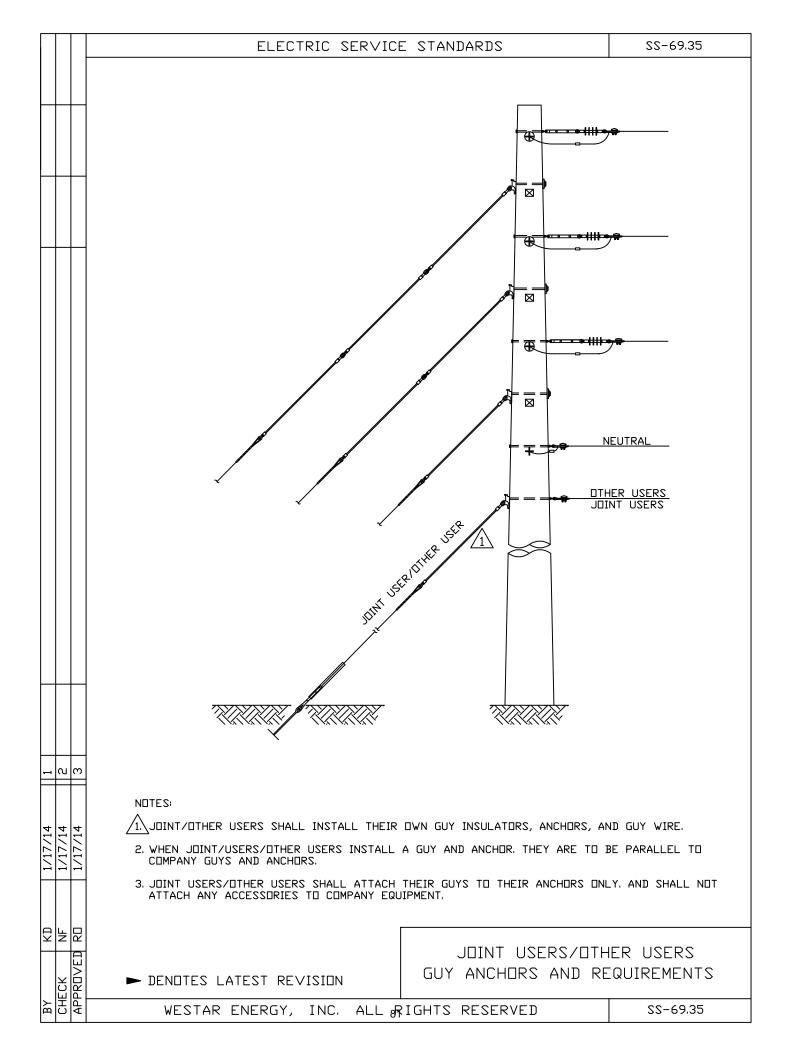
- 1. SUPPLY CABLE FOR PACKET ANTENNA & COMMUNICATION EQUIPMENT TO BE JACKETED MULTIPLE CONDUCTOR CABLE.
- 2. IF THERE IS NO EXISTING STREET LIGHT BRACKET ARM USE BRACKET ARM LISTED IN ITEM 2. WHEN A BRACKET ARM IS INSTALLED SOLELY TO MOUNT COMMUNICATION EQUIPMENT THE JACKETED MULTIPLE CONDUCTOR CABLE SHOULD BE INSTALLED INSIDE THE BRACKEY ARM. SEE 910.1-4.
- 3. MAXIMUM WEIGHT OF COMMUNICATION EQUIPMENT NOT TO EXCEED 15 <u>lbs</u> WHEN INSTALLED ON EXISTING STREET LIGHT BRACKET ARM. COMMUNICATION EQUIPMENT TO BE INSTALLED A MAXIMUM OF 3' FROM POLE ON EXISTING BRACKET ARM.
- 4. CUSTOMER TO PROVIDE AND INSTALL BRACKET ARM, CONNECTORS AND JACKETED MULTIPLE CONDUCTOR CABLE AS REQUIRED.
- 5. TO INSTALL AND MAINTAIN EQUIPMENT WORKERS MUST BE QUALIFIED TO WORK IN SUPPLY SPACE AND USE SUPPLY WORK RULES AND METHODS.
- BRACKET ARM SHALL BE BONDED TO POLE GROUND WITH #6 S.D. BARE COPPER CONDUCTOR.

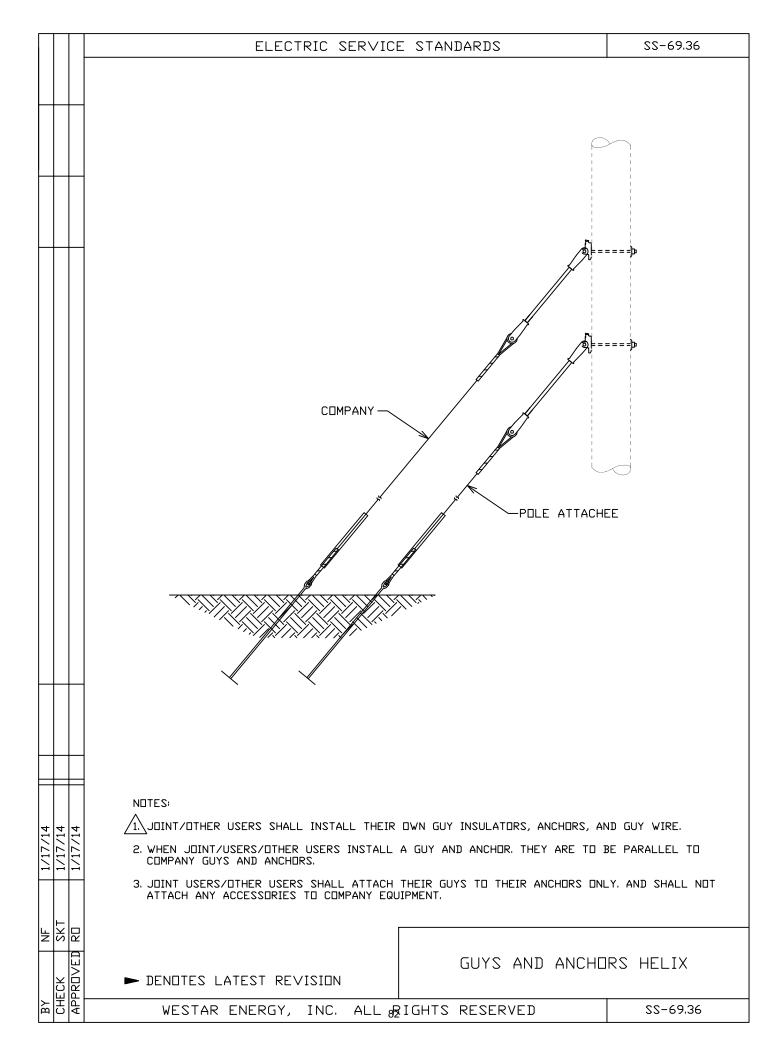
ANTENNA MOUNTED IN SUPPLY SPACE WIRELESS ATTACHMENT DEVICE

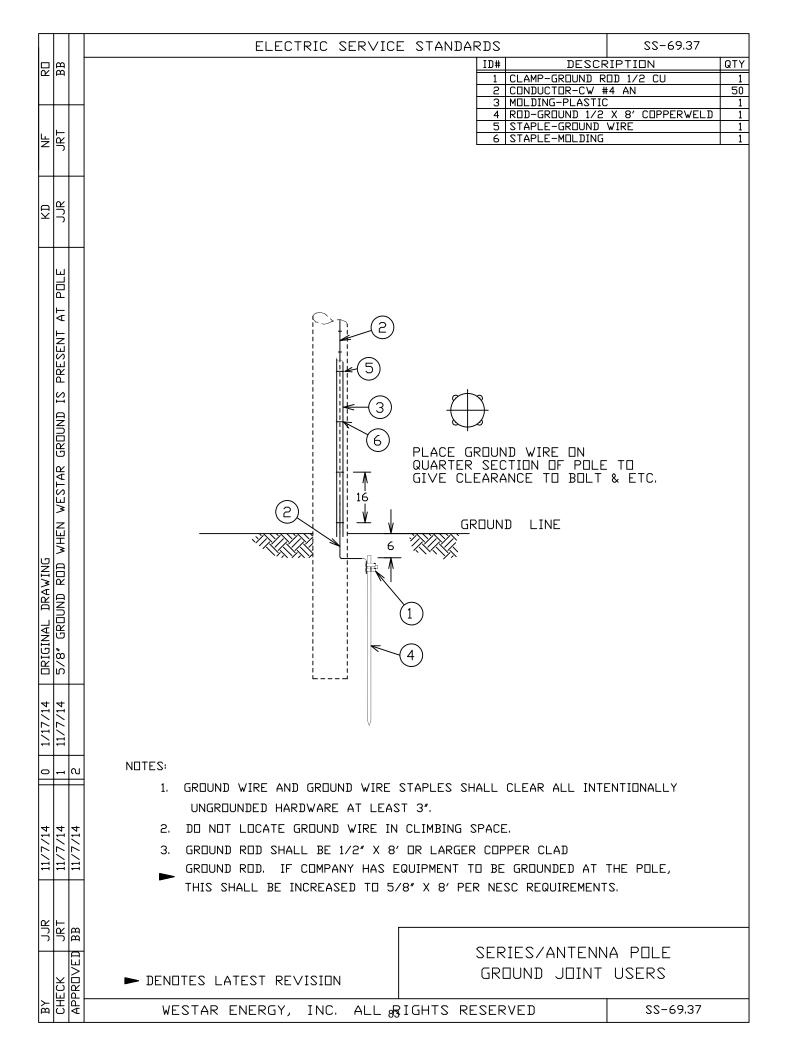

WESTAR ENERGY, INC. ALL RIGHTS RESERVED


SS-69.0B


VED			ELECTRIC SERVICE STAN	DARDS	SS-69.20A
APPROVED		RO	ATTACHEE OBLIGATIONS:		
			NO PORTION OF THE ANTENNA SHALL ENCROACH A 10 INCHES BELOW THE SUPPLY SPACE. (AS REQUI		
CHECK		JJR	NESC 238A)	4 === 1	-E
		$\frac{1}{1}$	3 DISCONNECT SHALL ALWAYS BE REQUIRED, EVEN ABSENT FROM THE INSTALLATION.	IF A METER IS	SUPPLY SPACE
ВУ		JJR	CUSTOMER POWER WIRES SHALL BE ENCLOSED IN SCHEDULE 40 PVC CONDUIT. ANY CONDUIT WITH A LARGER THAN 1" WILL BE REQUIRED TO BE MOUNT VIA STANDOFF BRACKETS.	A DIAMETER	
			CUSTOMER OWNED COMMUNICATIONS EQUIPMENT ANTENNAE) SHALL BE MOUNTED TO THE POLE VIA STANDOFF BRACKETS (NOT MOUNTED DIRECTLY TO CUSTOMER EQUIPMENT AND CONDUITS SHALL THAN TWO QUADRANTS OF THE POLE (SO AS TO MOUNTED DIRECTLY TO CUSTOMER EQUIPMENT AND BRACKETS BOND ALL CUSTOMER EQUIPMENT AND BRACKETS	F (BOXES, MIN. 6" FO THE POLE). KE UP NO MORE MITIGATE	MIN (COMMUNICATION (ER SAFETY ZONE - NESC)
z			GROUND. WEIGHT OF UNIT, ANTENNAS, AND EQUIPMENT SHA 35 LBS, WITH A MAXIMUM EFFECTIVE PROJECTED A FT, OR OTHERWISE APPROVED BY COMPANY ENGI	AREA OF 0.8 SQ.	COMMUNICATION SPACE
DESCRIPTION			8 ALL INSTALLATIONS SHALL BE IN ACCORDANCE WI'N NESC, NEC, AND LOCAL CODES.	TH STANDARD,	
DES(.D SS 69.20	9 MAKE READY WORK TO MEET REQUIREMENTS OUT STANDARD WILL BE BILLED TO ATTACHEE IN ACCO THE AGREEMENT.	. 1111	
		ED ON OLD	10 COMPANY: 1) WILL APPROVE ALL POLE LOCATION: EQUIPMENT IS INSTALLED. 2) WILL APPROVE ANY IDEVIATIONS FROM THIS STANDARD.		
		NEW DRAWING BASE	11 POLE LOADING ANALYSIS REQUIRED WITH PROPOSITIONS AND EQUIPMENT. FOR ANY PO 60 FEET FROM GROUND LEVEL, CUSTOMER SHALL EXTREME ICE/WIND USING NESC 250C AND 250D.	LE TALLER THAN A 2 [DISCONNECT
		H	ATTACHERS IN THE COMMUNICATION SPACE ARE NOT		
DATE		PERMITTED ON A SINGLE POLE. 13 ADDITIONAL REQUIREMENTS STATED ON SS 69.21			
REV	_	0	14 LOW-POWER AMI INSTALLATIONS ONLY MAY UTILIZ SO DESIRED.	ZE SS-69.20B IF	
2			GO DEGINED.		<u></u>
	Energy.				†
	a a			WIRELESS COMM	UNICATION
	200	$ec{\mathfrak{F}}$	PENOTEO LATEOT DE MOION	INSTALLATION IN CO	MMUNICATION
<	以以		DENOTES LATEST REVISION SPACE (SMALL		·
	WESTAR ENERGY, INC. ALL RIGHTS RESERVED SS-69.20A				


	ELECTRIC SERVICE STANDARDS	SS-69. 20B	
BB			
	NOTES:		
	ATTACHEE OBLIGATIONS: 1. UNIT SHALL BE INSTALLED ON 120V STREETLIGHT	\(\frac{1}{3} \sqrt{4} \)	
JRI	INSTALLATIONS ONLY.		
J. J. R.	DISTALL BE INSTALLED ON THE STREETLIGHT BRACKET AT A MAXIMUM DISTANCE OF 2 FEET FROM THE POLE SURFACE.	SUPPLY SPACE	
<u>'</u>	MUNIT TO BE INSTALLED ON 2" DIA. STEEL STREETLIGHT BRACKET.		
AMI-DNL	AUNIT SUPPLY CABLE SHALL BE SECURED TO THE STREETLIGHT BRACKET.	40″ MIN 	
T AN	ABOVE THE UNIT.	Ψ.	
AND CHANGED	WEIGHT OF UNIT, ANTENNAS AND EQUIPMENT SHALL NOT EXCEED 30 LBS. WITH A MAXIMUM EPA OF 0.8 SQ. FT. FOR 250W AND SMALLER LUMINAIRES. A MAXIMUM EPA OF 0.4 SQ. FT. FOR 400W LUMINAIRES. NO WIRELESS UNITS WILL BE INSTALLED ON BRACKETS WITH 1000W LUMINAIRES.	V C□MMUNICATI⊡N SPACE	
9, 20B A	MUNIT SHALL BE INSTALLED BY A QUALIFIED ELECTRICAL WORKER, SINCE THE UNIT WILL BE INSTALLED IN THE SUPPLY SPACE AS DEFINED IN THE NESC.		
DWG 69	8. INSTALLATION SHALL BE IN ACCORDANCE TO THIS STANDARD, NESC, NEC AND LOCAL CODE.		
NEW	9. MAKE READY WORK TO MEET REQUIREMENTS DUTLINED IN THIS STANDARD WILL BE BILLED TO ATTACHEE.		
EISSUED AS	10. COMPANY: 1) WILL APPROVE ALL POLE LOCATIONS BEFORE EQUIPMENT IS INSTALLED. 2) WILL APPROVE ANY ALTERATIONS FROM THIS STANDARD.		
ZE IS	11. ADDITIONAL REQUIREMENTS STATED ON SS 69.21		
0 11/07/14 69.20 F	12. ONLY ONE WIRELESS DEVICE (RECEIVER, TRANSMITTER, OR COMBINATION UNIT) LESS THAN 6×12×4 INCHES WILL BE ALLOWED PER POLE. MULTIPLE WIRELESS ATTACHERS ARE NOT PERMITTED ON A SINGLE POLE. A WIRELESS UNIT MAY BE ATTACHED TO A STREETLIGHT BRACKET ARM (DWG: 960, 1-19). IF ATTACHED TO THE STREET LIGHT BRACKET ARM, THE WIRELESS UNIT MUST BE NO MORE THAN 3 FEET AND NO LESS THAN 6 INCHES FROM THE POLE THE BRACKET ARM IS MOUNTED TO. MAXIMUM WEIGHT OF COMMUNICATION EQUIPMENT SHALL NOT EXCEED 15 LBS WHEN INSTALLED ON EXISTING STREET LIGHT BRACKET ARM. WIRELESS DEVICE MUST BE INSTALLED BY COMPANY APPROVED		
7/14	CONTRACTOR THAT IS APPROVED TO WORK IN THE SUPPLY SPACE.	·	
11/07	13. THIS DRAWING, FORMERLY 69.20, NOW TO BE USED FOR LOW-POWER AMI INSTALLATIONS ONLY. NON-AMI APPLICATIONS SHOULD REFER TO SS 69.0A AND/OR 69.20A AS APPROPRIATE.		
JUR JRT	* EPA: EFFECTIVE PROJECTED AREA	II	
BY CHECK JI GREGK	WIRELESS CUMMUNICATION ON STR		
	WESTAR ENERGY, INC. ALL RIGHTS RESERVED	SS-69, 20B	


	ELECTRIC SERVICE STANDARDS SS-69.30				
	EXHIBIT B-2				
	NEUTRAL HIGH OR NEUTRAL LOW, THE SPACING IS FROM THE LOWEST POINT OF ELECTRIC CONSTRUCTION TO THE HIGHEST POINT OF OTHER USERS/JOINT USERS CONSTRUCTION.				
	ELECTRIC SUPPLY				
	JOINT USERS/ FOREIGN ATTCHERS 1' CLEARANCE BETWEEN				
	NOTES: 1. REFERENCE NESC TABLES 232-1 LATEST REV. SEE SHEETS 8 AND 9. 2. POWER PRIMARY				
	V□LTAGE PHASE SRACING T□ T□ GR□UND 6 □THERS 0 - 8,700 40' 8,700 - 22,000 46' 22,000 - 35,000 53' 35,000 & GREATER 5				
	MINIMUM CLEARANCE REQUIRED AT MID-SPAN IS 2/3 DF CLEARANCE AT POLE PER NESC 238.				
3 8	COMMUNICATIONS CROSSING BENEATH AND PERPENDICULAR TO BUT NOT ATTACHED TO MUST MAINTAIN A 5' CLEARANCE, UNLESS HORIZONTAL DISTANCE IS CLOSER THAN 5', THEN THE COMMUNICATION LINE SHALL ATTACH, REF. NESC 223.				
/14 /14 /14	COMMUNICATION CONDUCTORS OR CABLES SHALL NOT ATTACH TO THE VOLTAGES (TRANSMISSION).				
1/17/14 1/17/14 1/17/14	NEW 'OTHER USER' CABLE SHALL BE INSTALLED AT THE TOP COMMUNICATION LOCATION AND ALL EXISTING CABLES SHALL BE LOWERED AND SEPARATED AS REQUIRED BY THE NESC (LATEST EDITION) ARTICLE 235 AND 238.				
	► 7. ALL JOINT USE AND OTHER USER CABLES SHALL BE TAGGED WITH COMPANIES ASSIGNED TAG NUMBER ON EQUIPMENT AND EVERY POLE.				
BY KD CHECK NF APPROVED RO	J□INT USERS/□THER USERS DENOTES LATEST REVISION CLEARANCE AB□VE GR□UND				
RHE BY APP	WESTAR ENERGY, INC. ALL RIGHTS RESERVED SS-69.30				



Appendix D: Tenant Tag Material Specifications

1. Scope

This specification covers tags to be attached to the facilities of parties other than Company attaching their cables to Company poles.

2. <u>Pole Tag Requirements</u>

- 2.1 Material shall be 0.010" thick yellow tear-resistant polyester film laminated on both sides with 0.001" thick ultraviolet-inhibiting clear Tedlar film.
 - 2.1.1 Exception: If manufacturer determines there will be a low volume of tags, yellow ultraviolet-inhibiting polyethylene laminate tags may be used.
- 2.2 The overall dimensions of the tag shall be 2" high by 4" wide.
- 2.3 The tag shall be imprinted or engraved on both faces with the number that Company assigns to pole tenant. Such number shall be black in color and 1 ½" high and shall read horizontally.
- 2.4 A 5/16" hole shall be included in each of the two upper corners of each tag.
 - 2.4.1 5/16" brass grommets are preferred on polyester tags.
- 2.5 Each tag shall be furnished with two non-reusable 7" black UV-resistant nylon cable ties.

3. Company Approval

Any material furnished under this specification is subject to approval by Company Distribution Standards.